Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2011 Jul 12;2(6):463–469. doi: 10.1007/s13238-011-1060-z

CCAAT/enhancer binding proteins play a role in oriLyt-dependent genome replication during MHV-68 de novo infection

Jing Qi 1,2, Danyang Gong 1,2, Hongyu Deng 1,
PMCID: PMC4875177  PMID: 21748596

Abstract

Murine gammaherpesvirus 68 (MHV-68), a member of the gammaherpesvirus family, replicates robustly in permissive cell lines and is able to infect laboratory mice. MHV-68 has emerged as a model for studying the basic aspects of viral replication and host-virus interactions of its human counterparts. Herpesvirus genome replication is mediated through a cis-element in the viral genome called the origin of lytic replication (oriLyt). A family of transcription factors, CCAAT/enhancer binding proteins (C/EBPs), assists in oriLyt-mediated DNA replication during gammaherpesvirus reactivation. In this study, we examined the role of C/EBPs in gammaherpesvirus DNA replication during de novo infection, using MHV-68 as a model. We found that C/EBP α and β bind to the CCAAT boxes in the MHV-68 oriLyt core region both in vitro and in vivo, as demonstrated by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. A dominant negative form of C/EBPs significantly impaired the lytic replication efficiency of MHV-68 on both the plasmid and genome levels in a replication assay, indicating that functional C/EBPs are required for maximal MHV-68 genome DNA replication. Collectively, our data demonstrate that C/EBPs interact with the oriLyt core region and play an important role in MHV-68 lytic DNA replication during de novo infection.

Keywords: C/EBPs, murine gammaherpesvirus 68, oriLyt, lytic replication

References

  1. Collins C.M., Medveczky M.M., Lund T., Medveczky P.G. The terminal repeats and latency-associated nuclear antigen of herpesvirus saimiri are essential for episomal persistence of the viral genome. J Gen Virol. 2002;83:2269–2278. doi: 10.1099/0022-1317-83-9-2269. [DOI] [PubMed] [Google Scholar]
  2. Deng H., Chu J.T., Park N.H., Sun R. Identification of cis sequences required for lytic DNA replication and packaging of murine gammaherpesvirus 68. J Virol. 2004;78:9123–9131. doi: 10.1128/JVI.78.17.9123-9131.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Efstathiou S., Ho Y.M., Hall S., Styles C.J., Scott S.D., Gompels U.A. Murine herpesvirus 68 is genetically related to the gammaherpesviruses Epstein-Barr virus and herpesvirus saimiri. J Gen Virol. 1990;71:1365–1372. doi: 10.1099/0022-1317-71-6-1365. [DOI] [PubMed] [Google Scholar]
  4. Gong D., Qi J., Arumugaswami V., Sun R., Deng H. Identification and functional characterization of the left origin of lytic replication of murine gammaherpesvirus 68. Virology. 2009;387:285–295. doi: 10.1016/j.virol.2009.02.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hu J., Renne R. Characterization of the minimal replicator of Kaposi’s sarcoma-associated herpesvirus latent origin. J Virol. 2005;79:2637–2642. doi: 10.1128/JVI.79.4.2637-2642.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Huang J., Liao G., Chen H., Wu F.Y., Hutt-Fletcher L., Hayward G. S., Hayward S.D. Contribution of C/EBP proteins to Epstein-Barr virus lytic gene expression and replication in epithelial cells. J Virol. 2006;80:1098–1109. doi: 10.1128/JVI.80.3.1098-1109.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kieff E., Rickinson A.B. Epstein-Barr virus and its replication. In: Howley D.M.K.a.P.M., editor. Fields Virology. Philadelphia, Pa.: Lippincott Williams & Wilkins; 2001. pp. 2511–2627. [Google Scholar]
  8. Landschulz W.H., Johnson P.F., McKnight S.L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988;240:1759–1764. doi: 10.1126/science.3289117. [DOI] [PubMed] [Google Scholar]
  9. Mocarski E.S.J., Courcelle C.T. Cytomegaloviruses and their replication. In: Howley D.M.K.a.P.M., editor. Fields Virology. Philadelphia, Pa.: Lippincott Williams & Wilkins; 2001. pp. 2629–2673. [Google Scholar]
  10. Moore P.S., Chang Y. Kaposi’s sarcoma-associated herpesvirus. In: Knipe P.M.H. D. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E., editors. Fields Virology. Philadelphia, Pa.: Lippincott Williams and Wilkins; 2001. pp. 2803–2833. [Google Scholar]
  11. Ramji D.P., Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J. 2002;365:561–575. doi: 10.1042/bj20020508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Roizman B., Knipe D.M. Herpes simplex viruses and their replication. In: Howley D.M.K.a.P.M., editor. Fields Virology. Philadelphia, Pa.: Lippincott Williams & Wilkins; 2001. pp. 2399–2460. [Google Scholar]
  13. Roizman B., Pellett P.E., et al. Herpesviridae: a brief introduction. In: Fields B.N., Knipe D.M., Howley P.M., et al., editors. Fields Virology. Philadelphia, Pa.: Lippincott Williams and Wilkins; 2001. pp. 2381–2398. [Google Scholar]
  14. Schreiber E., Matthias P., Müller M.M., Schaffner W. Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res. 1989;17:6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Simas J.P., Efstathiou S. Murine gammaherpesvirus 68: a model for the study of gammaherpesvirus pathogenesis. Trends Microbiol. 1998;6:276–282. doi: 10.1016/S0966-842X(98)01306-7. [DOI] [PubMed] [Google Scholar]
  16. Virgin H.W., 4th, Latreille P., Wamsley P., Hallsworth K., Weck K.E., Dal Canto A.J., Speck S.H. Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol. 1997;71:5894–5904. doi: 10.1128/jvi.71.8.5894-5904.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wang Y., Li H., Chan M.Y., Zhu F.X., Lukac D.M., Yuan Y. Kaposi’s sarcoma-associated herpesvirus ori-Lytdependent DNA replication: cis-acting requirements for replication and ori-Lyt-associated RNA transcription. J Virol. 2004;78:8615–8629. doi: 10.1128/JVI.78.16.8615-8629.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wu F.Y., Wang S.E., Tang Q.Q., Fujimuro M., Chiou C.J., Zheng Q., Chen H., Hayward S.D., Lane M.D., Hayward G.S. Cell cycle arrest by Kaposi’s sarcoma-associated herpesvirus replication-associated protein is mediated at both the transcriptional and posttranslational levels by binding to CCAAT/enhancer-binding protein alpha and p21(CIP-1) J Virol. 2003;77:8893–8914. doi: 10.1128/JVI.77.16.8893-8914.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Xu Y., Zhou Y.L., Luo W., Zhu Q.S., Levy D., MacDougald O.A., Snead M.L. NF-Y and CCAAT/enhancer-binding protein alpha synergistically activate the mouse amelogenin gene. J Biol Chem. 2006;281:16090–16098. doi: 10.1074/jbc.M510514200. [DOI] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES