Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2011 Jul 12;2(6):487–496. doi: 10.1007/s13238-011-1061-y

Interactomic study on interaction between lipid droplets and mitochondria

Jing Pu 1,2, Cheol Woong Ha 3, Shuyan Zhang 1, Jong Pil Jung 3, Won-Ki Huh 3,, Pingsheng Liu 1,
PMCID: PMC4875178  PMID: 21748599

Abstract

An increasing body of evidence shows that the lipid droplet, a neutral lipid storage organelle, plays a role in lipid metabolism and energy homeostasis through its interaction with mitochondria. However, the cellular functions and molecular mechanisms of the interaction remain ambiguous. Here we present data from transmission electron microscopy, fluorescence imaging, and reconstitution assays, demonstrating that lipid droplets physically contact mitochondria in vivo and in vitro. Using a bimolecular fluorescence complementation assay in Saccharomyces cerevisiae, we generated an interactomic map of protein-protein contacts of lipid droplets with mitochondria and peroxisomes. The lipid droplet proteins Erg6 and Pet10 were found to be involved in 75% of the interactions detected. Interestingly, interactions between 3 pairs of lipid metabolic enzymes were detected. Collectively, these data demonstrate that lipid droplets make physical contacts with mitochondria and peroxisomes, and reveal specific molecular interactions that suggest active participation of lipid droplets in lipid metabolism in yeast.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-011-1061-y and is accessible for authorized users.

Keywords: peroxisomes, bimolecular fluorescence complementation assay, protein-protein interaction, lipid metabolism, Erg6

Electronic supplementary material

13238_2011_1061_MOESM1_ESM.pdf (257.8KB, pdf)

Supplementary material, approximately 257 KB.

Footnotes

These authors contributed equally to the work.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-011-1061-y and is accessible for authorized users.

Contributor Information

Won-Ki Huh, Email: wkh@snu.ac.kr.

Pingsheng Liu, Email: pliu@ibp.ac.cn.

References

  1. Beller M., Riedel D., Jänsch L., Dieterich G., Wehland J., Jäckle H., Kühnlein R.P. Characterization of the Drosophila lipid droplet subproteome. Mol Cell Proteomics. 2006;5:1082–1094. doi: 10.1074/mcp.M600011-MCP200. [DOI] [PubMed] [Google Scholar]
  2. Binns D., Januszewski T., Chen Y., Hill J., Markin V.S., Zhao Y., Gilpin C., Chapman K.D., Anderson R.G., Goodman J.M. An intimate collaboration between peroxisomes and lipid bodies. J Cell Biol. 2006;173:719–731. doi: 10.1083/jcb.200511125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blanchette-Mackie E.J., Scow R.O. Movement of lipolytic products to mitochondria in brown adipose tissue of young rats: an electron microscope study. J Lipid Res. 1983;24:229–244. [PubMed] [Google Scholar]
  4. Blondel M., Bach S., Bamps S., Dobbelaere J., Wiget P., Longaretti C., Barral Y., Meijer L., Peter M. Degradation of Hof1 by SCF(Grr1) is important for actomyosin contraction during cytokinesis in yeast. EMBO J. 2005;24:1440–1452. doi: 10.1038/sj.emboj.7600627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brasaemle D.L., Dolios G., Shapiro L., Wang R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem. 2004;279:46835–46842. doi: 10.1074/jbc.M409340200. [DOI] [PubMed] [Google Scholar]
  6. Cermelli S., Guo Y., Gross S.P., Welte M.A. The lipiddroplet proteome reveals that droplets are a protein-storage depot. Curr Biol. 2006;16:1783–1795. doi: 10.1016/j.cub.2006.07.062. [DOI] [PubMed] [Google Scholar]
  7. Egan J.J., Greenberg A.S., Chang M.K., Wek S.A., Moos M.C., Jr, Londos C. Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. Proc Natl Acad Sci U S A. 1992;89:8537–8541. doi: 10.1073/pnas.89.18.8537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gaber R.F., Copple D.M., Kennedy B.K., Vidal M., Bard M. The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cyclesparking sterol. Mol Cell Biol. 1989;9:3447–3456. doi: 10.1128/MCB.9.8.3447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goodman J.M. The gregarious lipid droplet. J Biol Chem. 2008;283:28005–28009. doi: 10.1074/jbc.R800042200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guo Y., Jangi S., Welte M.A. Organelle-specific control of intracellular transport: distinctly targeted isoforms of the regulator Klar. Mol Biol Cell. 2005;16:1406–1416. doi: 10.1091/mbc.E04-10-0920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hu C.D., Kerppola T.K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol. 2003;21:539–545. doi: 10.1038/nbt816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huh W.K., Falvo J.V., Gerke L.C., Carroll A.S., Howson R.W., Weissman J.S., O’shea E.K. Global analysis of protein localization in budding yeast. Nature. 2003;425:686–691. doi: 10.1038/nature02026. [DOI] [PubMed] [Google Scholar]
  13. Jägerström S., Polesie S., Wickström Y., Johansson B.R., Schröder H.D., Højlund K., Boström P. Lipid droplets interact with mitochondria using SNAP23. Cell Biol Int. 2009;33:934–940. doi: 10.1016/j.cellbi.2009.06.011. [DOI] [PubMed] [Google Scholar]
  14. Kalashnikova, M.M., and Fadeeva, E.O. (2006). Ultrastructural study of liver cells from rooks living in ecologically unfavorable areas. Izv Akad Nauk Ser Biol (2), 133–141. [PubMed]
  15. Katavic V., Agrawal G.K., Hajduch M., Harris S.L., Thelen J.J. Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics. 2006;6:4586–4598. doi: 10.1002/pmic.200600020. [DOI] [PubMed] [Google Scholar]
  16. Liu P., Bartz R., Zehmer J.K., Ying Y., Anderson R.G. Rab-regulated membrane traffic between adiposomes and multiple endomembrane systems. Methods Enzymol. 2008;439:327–337. doi: 10.1016/S0076-6879(07)00424-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liu P., Bartz R., Zehmer J.K., Ying Y.S., Zhu M., Serrero G., Anderson R.G. Rab-regulated interaction of early endosomes with lipid droplets. Biochim Biophys Acta. 2007;1773:784–793. doi: 10.1016/j.bbamcr.2007.02.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu P., Ying Y., Zhao Y., Mundy D.I., Zhu M., Anderson R.G. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem. 2004;279:3787–3792. doi: 10.1074/jbc.M311945200. [DOI] [PubMed] [Google Scholar]
  19. Martin S., Parton R.G. Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol. 2006;7:373–378. doi: 10.1038/nrm1912. [DOI] [PubMed] [Google Scholar]
  20. Murphy D.J. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res. 2001;40:325–438. doi: 10.1016/S0163-7827(01)00013-3. [DOI] [PubMed] [Google Scholar]
  21. Murphy S., Martin S., Parton R.G. Lipid dropletorganelle interactions; sharing the fats. Biochim Biophys Acta. 2009;1791:441–447. doi: 10.1016/j.bbalip.2008.07.004. [DOI] [PubMed] [Google Scholar]
  22. Novikoff A.B., Novikoff P.M., Rosen O.M., Rubin C.S. Organelle relationships in cultured 3T3-L1 preadipocytes. J Cell Biol. 1980;87:180–196. doi: 10.1083/jcb.87.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shaw C.S., Jones D.A., Wagenmakers A.J. Network distribution of mitochondria and lipid droplets in human muscle fibres. Histochem Cell Biol. 2008;129:65–72. doi: 10.1007/s00418-007-0349-8. [DOI] [PubMed] [Google Scholar]
  25. Sung M.K., Huh W.K. Bimolecular fluorescence complementation analysis system for in vivo detection of proteinprotein interaction in Saccharomyces cerevisiae. Yeast. 2007;24:767–775. doi: 10.1002/yea.1504. [DOI] [PubMed] [Google Scholar]
  26. Tarnopolsky M.A., Rennie C.D., Robertshaw H.A., Fedak-Tarnopolsky S.N., Devries M.C., Hamadeh M.J. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1271–R1278. doi: 10.1152/ajpregu.00472.2006. [DOI] [PubMed] [Google Scholar]
  27. Tauchi-Sato K., Ozeki S., Houjou T., Taguchi R., Fujimoto T. The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition. J Biol Chem. 2002;277:44507–44512. doi: 10.1074/jbc.M207712200. [DOI] [PubMed] [Google Scholar]
  28. Tedrick K., Trischuk T., Lehner R., Eitzen G. Enhanced membrane fusion in sterol-enriched vacuoles bypasses the Vrp1p requirement. Mol Biol Cell. 2004;15:4609–4621. doi: 10.1091/mbc.E04-03-0194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Turró S., Ingelmo-Torres M., Estanyol J.M., Tebar F., Fernández M. A., Albor C.V., Gaus K., Grewal T., Enrich C., Pol A. Identification and characterization of associated with lipid droplet protein 1: A novel membrane-associated protein that resides on hepatic lipid droplets. Traffic. 2006;7:1254–1269. doi: 10.1111/j.1600-0854.2006.00465.x. [DOI] [PubMed] [Google Scholar]
  30. Zehmer J.K., Huang Y., Peng G., Pu J., Anderson R.G., Liu P. A role for lipid droplets in inter-membrane lipid traffic. Proteomics. 2009;9:914–921. doi: 10.1002/pmic.200800584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zhang S., Du Y., Wang Y., Liu P. Lipid Droplet — A Cellular Organelle for Lipid Metabolism. Acta Biophisica Sinica. 2010;26:97–105. [Google Scholar]
  32. Zimmermann R., Strauss J.G., Haemmerle G., Schoiswohl G., Birner-Gruenberger R., Riederer M., Lass A., Neuberger G., Eisenhaber F., Hermetter A., et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306:1383–1386. doi: 10.1126/science.1100747. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

13238_2011_1061_MOESM1_ESM.pdf (257.8KB, pdf)

Supplementary material, approximately 257 KB.


Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES