Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2010 Aug 28;1(8):771–779. doi: 10.1007/s13238-010-0085-z

Structural basis for prokaryotic calciummediated regulation by a Streptomyces coelicolor calcium binding protein

Xiaoyan Zhao 1, Hai Pang 1, Shenglan Wang 2, Weihong Zhou 3, Keqian Yang 2,, Mark Bartlam 3,
PMCID: PMC4875191  PMID: 21203918

Abstract

The important and diverse regulatory roles of Ca2+ in eukaryotes are conveyed by the EF-hand containing calmodulin superfamily. However, the calcium-regulatory proteins in prokaryotes are still poorly understood. In this study, we report the three-dimensional structure of the calcium-binding protein from Streptomyces coelicolor, named CabD, which shares low sequence homology with other known helix-loop-helix EF-hand proteins. The CabD structure should provide insights into the biological role of the prokaryotic calcium-binding proteins. The unusual structural features of CabD compared with prokaryotic EF-hand proteins and eukaryotic sarcoplasmic calcium-binding proteins, including the bending conformation of the first C-terminal α-helix, unpaired ligand-binding EF-hands and the lack of the extreme C-terminal loop region, suggest it may have a distinct and significant function in calcium-mediated bacterial physiological processes, and provide a structural basis for potential calcium-mediated regulatory roles in prokaryotes.

Keywords: calcium-binding protein, crystal structure, Streptomyces coelicolor, calcium-mediated regulation, EF-hand

Footnotes

These authors contributed equally to the work.

Contributor Information

Keqian Yang, Email: yangkq@im.ac.cn.

Mark Bartlam, Email: bartlam@nankai.edu.cn.

References

  1. Babu Y.S., Bugg C.E., Cook W.J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988;204:191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
  2. Bentley S.D., Chater K.F., Cerdeño-Tárraga A.M., Challis G.L., Thomson N.R., James K.D., Harris D.E., Quail M.A., Kieser H., Harper D., et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) Nature. 2002;417:141–147. doi: 10.1038/417141a. [DOI] [PubMed] [Google Scholar]
  3. Bylsma N., Drakenberg T., Andersson I., Leadlay P.F., Forsén S. Prokaryotic calcium-binding protein of the calmodulin superfamily. Calcium binding to a Saccharopolyspora erythraea 20 kDa protein. FEBS Lett. 1992;299:44–47. doi: 10.1016/0014-5793(92)80096-Y. [DOI] [PubMed] [Google Scholar]
  4. Clapham D.E. Calcium signaling. Cell. 1995;80:259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  5. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 1994;50:760–763. doi: 10.1107/S0907444994003112. [DOI] [PubMed] [Google Scholar]
  6. Cook W.J., Ealick S.E., Babu Y.S., Cox J.A., Vijay-Kumar S. Three-dimensional structure of a sarcoplasmic calcium-binding protein from Nereis diversicolor. J Biol Chem. 1991;266:652–656. [PubMed] [Google Scholar]
  7. Cook W.J., Jeffrey L.C., Cox J.A., Vijay-Kumar S. Structure of a sarcoplasmic calcium-binding protein from amphioxus refined at 2.4 A resolution. J Mol Biol. 1993;229:461–471. doi: 10.1006/jmbi.1993.1046. [DOI] [PubMed] [Google Scholar]
  8. Cox J.A., Bairoch A. Sequence similarities in calcium-binding proteins. Nature. 1988;331:491. doi: 10.1038/331491a0. [DOI] [PubMed] [Google Scholar]
  9. Emsley P., Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. [DOI] [PubMed] [Google Scholar]
  10. Erskine P.T., Beaven G.D., Hagan R., Findlow I.S., Werner J.M., Wood S.P., Vernon J., Giese K.P., Fox G., Cooper J.B. Structure of the neuronal protein calexcitin suggests a mode of interaction in signalling pathways of learning and memory. J Mol Biol. 2006;357:1536–1547. doi: 10.1016/j.jmb.2006.01.083. [DOI] [PubMed] [Google Scholar]
  11. Gombos Z., Jeromin A., Mal T.K., Chakrabartty A., Ikura M. Calexcitin B is a new member of the sarcoplasmic calcium-binding protein family. J Biol Chem. 2001;276:22529–22536. doi: 10.1074/jbc.M010508200. [DOI] [PubMed] [Google Scholar]
  12. Hermann A., Cox J.A. Sarcoplasmic calcium-binding protein. Comp Biochem Physiol B Biochem Mol Biol. 1995;111:337–345. doi: 10.1016/0305-0491(94)00218-J. [DOI] [PubMed] [Google Scholar]
  13. Holm L., Sander C. Touring protein fold space with Dali/FSSP. Nucleic Acids Res. 1998;26:316–319. doi: 10.1093/nar/26.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ikura M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci. 1996;21:14–17. doi: 10.1016/S0968-0004(06)80021-6. [DOI] [PubMed] [Google Scholar]
  15. Ikura M., Clore G.M., Gronenborn A.M., Zhu G., Klee C.B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992;256:632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
  16. Laskowski R.A., Moss D.S., Thornton J.M. Main-chain bond lengths and bond angles in protein structures. J Mol Biol. 1993;231:1049–1067. doi: 10.1006/jmbi.1993.1351. [DOI] [PubMed] [Google Scholar]
  17. Leadlay P.F., Roberts G., Walker J.E. Isolation of a novel calcium-binding protein from Streptomyces erythreus. FEBS Lett. 1984;178:157–160. doi: 10.1016/0014-5793(84)81261-2. [DOI] [Google Scholar]
  18. Michiels J., Xi C., Verhaert J., Vanderleyden J. The functions of Ca(2+) in bacteria: a role for EF-hand proteins? Trends Microbiol. 2002;10:87–93. doi: 10.1016/S0966-842X(01)02284-3. [DOI] [PubMed] [Google Scholar]
  19. Murshudov G.N., Vagin A.A., Dodson E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997;53:240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
  20. Natsume M., Marumo S. Calcium signal modulators inhibit aerial mycelium formation in Streptomyces alboniger. J Antibiot (Tokyo) 1992;45:1026–1028. doi: 10.7164/antibiotics.45.1026. [DOI] [PubMed] [Google Scholar]
  21. Natsume M., Yasui K., Marumo S. Calcium ion regulates aerial mycelium formation in actinomycetes. J Antibiot (Tokyo) 1989;42:440–447. doi: 10.7164/antibiotics.42.440. [DOI] [PubMed] [Google Scholar]
  22. Norris V., Chen M., Goldberg M., Voskuil J., McGurk G., Holland I.B. Calcium in bacteria: a solution to which problem? Mol Microbiol. 1991;5:775–778. doi: 10.1111/j.1365-2958.1991.tb00748.x. [DOI] [PubMed] [Google Scholar]
  23. Norris V., Grant S., Freestone P., Canvin J., Sheikh F.N., Toth I., Trinei M., Modha K., Norman R.I. Calcium signalling in bacteria. J Bacteriol. 1996;178:3677–3682. doi: 10.1128/jb.178.13.3677-3682.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Onek L.A., Smith R.J. Calmodulin and calcium mediated regulation in prokaryotes. J Gen Microbiol. 1992;138:1039–1049. doi: 10.1099/00221287-138-6-1039. [DOI] [PubMed] [Google Scholar]
  25. Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. In Macromolecular Crystallography, part A, C.W. Carter Jr., and R.M. Sweet, eds. (Academic Press), pp. 307–326. [DOI] [PubMed]
  26. Rabah G., Popescu R., Cox J.A., Engelborghs Y., Craescu C. T. Solution structure and internal dynamics of NSCP, a compact calcium-binding protein. FEBS J. 2005;272:2022–2036. doi: 10.1111/j.1742-4658.2005.04629.x. [DOI] [PubMed] [Google Scholar]
  27. Satyshur K.A., Rao S.T., Pyzalska D., Drendel W., Greaser M., Sundaralingam M. Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2-A resolution. J Biol Chem. 1988;263:1628–1647. [PubMed] [Google Scholar]
  28. Strynadka N.C., James M.N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem. 1989;58:951–999. doi: 10.1146/annurev.bi.58.070189.004511. [DOI] [PubMed] [Google Scholar]
  29. Swan D.G., Hale R.S., Dhillon N., Leadlay P.F. A bacterial calcium-binding protein homologous to calmodulin. Nature. 1987;329:84–85. doi: 10.1038/329084a0. [DOI] [PubMed] [Google Scholar]
  30. Terwilliger T.C. Maximum-likelihood density modification. Acta Crystallogr D Biol Crystallogr. 2000;56:965–972. doi: 10.1107/S0907444900005072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Terwilliger T.C., Berendzen J. Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr. 1999;55:849–861. doi: 10.1107/S0907444999000839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Thompson J.D., Higgins D.G., Gibson T.J. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tossavainen H., Permi P., Annila A., Kilpeläinen I., Drakenberg T. NMR solution structure of calerythrin, an EF-hand calcium-binding protein from Saccharopolyspora erythraea. Eur J Biochem. 2003;270:2505–2512. doi: 10.1046/j.1432-1033.2003.03623.x. [DOI] [PubMed] [Google Scholar]
  34. Vijay-Kumar S., Cook W.J. Structure of a sarcoplasmic calcium-binding protein from Nereis diversicolor refined at 2.0 A resolution. J Mol Biol. 1992;224:413–426. doi: 10.1016/0022-2836(92)91004-9. [DOI] [PubMed] [Google Scholar]
  35. Xi C., Schoeters E., Vanderleyden J., Michiels J. Symbiosis-specific expression of Rhizobium etli casA encoding a secreted calmodulin-related protein. Proc Natl Acad Sci U S A. 2000;97:11114–11119. doi: 10.1073/pnas.210181097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yang K. Prokaryotic calmodulins: recent developments and evolutionary implications. J Mol Microbiol Biotechnol. 2001;3:457–459. [PubMed] [Google Scholar]
  37. Yonekawa T., Ohnishi Y., Horinouchi S. A calciumbinding protein with four EF-hand motifs in Streptomyces ambofaciens. Biosci Biotechnol Biochem. 2001;65:156–160. doi: 10.1271/bbb.65.156. [DOI] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES