Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2010 Aug 28;1(8):711–717. doi: 10.1007/s13238-010-0095-x

Mice-lacking LMP2, immuno-proteasome subunit, as an animal model of spontaneous uterine leiomyosarcoma

Takuma Hayashi 1,7,, Akiko Horiuchi 2, Kenji Sano 3, Nobuyoshi Hiraoka 4, Yae Kanai 4, Tanri Shiozawa 2, Susumu Tonegawa 5, Ikuo Konishi 6
PMCID: PMC4875197  PMID: 21203912

Abstract

Uterine tumors are the most common type of gynecologic neoplasm. Uterine leiomyosarcoma (LMS) is rare, accounting for 2% to 5% of tumors of the uterine body. Uterine LMS develops more often in the muscle tissue layer of the uterine body than in the uterine cervix. The development of gynecologic tumors is often correlated with female hormone secretion; however, the development of uterine LMS is not substantially correlated with hormonal conditions, and the risk factors are not yet known. Radiographic evaluation combined with PET/CT can be useless in the diagnosis and surveillance of uterine LMS. Importantly, a diagnostic biomarker, which distinguishes malignant LMS and benign tumor leiomyoma (LMA) is yet to be established. Accordingly, it is necessary to analyze risk factors associated with uterine LMS in order to establish a method of treatment. LMP2-deficient mice spontaneously develop uterine LMS, with a disease prevalence of ∼40% by 14 months of age. It is therefore of interest whether human uterine LMS shows a loss of LMP2 expression. We found LMP2 expression is absent in human LMS, but present in human LMA. Therefore, defective LMP2 expression may be one of the risk factors for LMS. LMP2 is potentially a diagnostic biomarker for uterine LMS, and gene therapy with LMP2-encording DNA may be a new therapeutic approach.

Keywords: LMP2, uterine leiomyosarcoma, uterine leiomyoma, diagnostic biomarker

References

  1. Akhan S.E., Yavuz E., Tecer A., Iyibozkurt C.A., Topuz S., Tuzlali S., Bengisu E., Berkman S. The expression of Ki-67, p53, estrogen and progesterone receptors affecting survival in uterine leiomyosarcomas. A clinicopathologic study. Gynecol Oncol. 2005;99:36–42. doi: 10.1016/j.ygyno.2005.05.019. [DOI] [PubMed] [Google Scholar]
  2. Amant F., Coosemans A., Debiec-Rychter M., Timmerman D., Vergote I. Clinical management of uterine sarcomas. Lancet Oncol. 2009;10:1188–1198. doi: 10.1016/S1470-2045(09)70226-8. [DOI] [PubMed] [Google Scholar]
  3. Brooks S.E., Zhan M., Cote T., Baquet C.R. Surveillance, epidemiology, and end results analysis of 2677 cases of uterine sarcoma 1989–1999. Gynecol Oncol. 2004;93:204–208. doi: 10.1016/j.ygyno.2003.12.029. [DOI] [PubMed] [Google Scholar]
  4. Brucet M., Marqués L., Sebastián C., Lloberas J., Celada A. Regulation of murine Tap1 and Lmp2 genes in macrophages by interferon gamma is mediated by STAT1 and IRF-1. Genes Immun. 2004;5:26–35. doi: 10.1038/sj.gene.6364035. [DOI] [PubMed] [Google Scholar]
  5. Delp K., Momburg F., Hilmes C., Huber C., Seliger B. Functional deficiencies of components of the MHC class I antigen pathway in human tumors of epithelial origin. Bone Marrow Transplant. 2000;25:S88–S95. doi: 10.1038/sj.bmt.1702363. [DOI] [PubMed] [Google Scholar]
  6. Dunn G.P., Bruce A.T., Ikeda H., Old L.J., Schreiber R.D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–998. doi: 10.1038/ni1102-991. [DOI] [PubMed] [Google Scholar]
  7. Dunn G.P., Old L.J., Schreiber R.D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21:137–148. doi: 10.1016/j.immuni.2004.07.017. [DOI] [PubMed] [Google Scholar]
  8. Dusenbery K.E., Potish R.A., Judson P. Limitations of adjuvant radiotherapy for uterine sarcomas spread beyond the uterus. Gynecol Oncol. 2004;94:191–196. doi: 10.1016/j.ygyno.2004.04.001. [DOI] [PubMed] [Google Scholar]
  9. Gaczynska M., Rock K.L., Goldberg A.L. γ-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature. 1993;365:264–267. doi: 10.1038/365264a0. [DOI] [PubMed] [Google Scholar]
  10. Groettrup M., Khan S., Schwarz K., Schmidtke G. Interferon-γ inducible exchanges of 20S proteasome active site subunits: why? Biochimie. 2001;83:367–372. doi: 10.1016/S0300-9084(01)01251-2. [DOI] [PubMed] [Google Scholar]
  11. Harada H., Kitagawa M., Tanaka N., Yamamoto H., Harada K., Ishihara M., Taniguchi T. Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and -2. Science. 1993;259:971–974. doi: 10.1126/science.8438157. [DOI] [PubMed] [Google Scholar]
  12. Hayashi T., Faustman D.L. Development of spontaneous uterine tumors in low molecular mass polypeptide-2 knockout mice. Cancer Res. 2002;62:24–27. [PubMed] [Google Scholar]
  13. Hayashi T., Kobayashi Y., Kohsaka S., Sano K. The mutation in the ATP-binding region of JAK1, identified in human uterine leiomyosarcomas, results in defective interferon-gamma inducibility of TAP1 and LMP2. Oncogene. 2006;25:4016–4026. doi: 10.1038/sj.onc.1209434. [DOI] [PubMed] [Google Scholar]
  14. Kanamori T., Takakura K., Mandai M., Kariya M., Fukuhara K., Kusakari T., Momma C., Shime H., Yagi H., Konishi M., et al. PEP-19 overexpression in human uterine leiomyoma. Mol Hum Reprod. 2003;9:709–717. doi: 10.1093/molehr/gag088. [DOI] [PubMed] [Google Scholar]
  15. Koepp D.M., Schaefer L.K., Ye X., Keyomarsi K., Chu C., Harper J.W., Elledge S.J. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science. 2001;294:173–177. doi: 10.1126/science.1065203. [DOI] [PubMed] [Google Scholar]
  16. Lassot I., Latreille D., Rousset E., Sourisseau M., Linares L.K., Chable-Bessia C., Coux O., Benkirane M., Kiernan R.E. The proteasome regulates HIV-1 transcription by both proteolytic and nonproteolytic mechanisms. Mol Cell. 2007;25:369–383. doi: 10.1016/j.molcel.2006.12.020. [DOI] [PubMed] [Google Scholar]
  17. Lin J.F., Slomovitz B.M. Uterine sarcoma 2008. Curr Oncol Rep. 2008;10:512–518. doi: 10.1007/s11912-008-0077-9. [DOI] [PubMed] [Google Scholar]
  18. Maniatis T. A ubiquitin ligase complex essential for the NFkappaB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev. 1999;13:505–510. doi: 10.1101/gad.13.5.505. [DOI] [PubMed] [Google Scholar]
  19. Matsumoto Y., Maller J.L. A centrosomal localization signal in cyclin E required for Cdk2-independent S phase entry. Science. 2004;306:885–888. doi: 10.1126/science.1103544. [DOI] [PubMed] [Google Scholar]
  20. Miettinen M., Fetsch J.F. Evaluation of biological potential of smooth muscle tumours. Histopathology. 2006;48:97–105. doi: 10.1111/j.1365-2559.2005.02292.x. [DOI] [PubMed] [Google Scholar]
  21. Nakajima C., Uekusa Y., Iwasaki M., Yamaguchi N., Mukai T., Gao P., Tomura M., Ono S., Tsujimura T., Fujiwara H., et al. A role of interferon-γ (IFN-γ) in tumor immunity: T cells with the capacity to reject tumor cells are generated but fail to migrate to tumor sites in IFN-γ-deficient mice. Cancer Res. 2001;61:3399–3405. [PubMed] [Google Scholar]
  22. Shankaran V., Ikeda H., Bruce A.T., White J.M., Swanson P.E., Old L.J., Schreiber R.D. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–1111. doi: 10.1038/35074122. [DOI] [PubMed] [Google Scholar]
  23. Sherr C.J. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res. 2000;60:3689–3695. [PubMed] [Google Scholar]
  24. Tanaka N., Ishihara M., Lamphier M.S., Nozawa H., Matsuyama T., Mak T.W., Aizawa S., Tokino T., Oren M., Taniguchi T. Cooperation of the tumour suppressors IRF-1 and p53 in response to DNA damage. Nature. 1996;382:816–818. doi: 10.1038/382816a0. [DOI] [PubMed] [Google Scholar]
  25. Van Kaer L., Ashton-Rickardt P.G., Eichelberger M., Gaczynska M., Nagashima K., Rock K.L., Goldberg A.L., Doherty P.C., Tonegawa S. Altered peptidase and viral-specific T cell response in LMP2 mutant mice. Immunity. 1994;1:533–541. doi: 10.1016/1074-7613(94)90043-4. [DOI] [PubMed] [Google Scholar]
  26. Wang L., Felix J.C., Lee J.L., Tan P.Y., Tourgeman D.E., O’Meara A.T., Amezcua C.A. The proto-oncogene c-kit is expressed in leiomyosarcomas of the uterus. Gynecol Oncol. 2003;90:402–406. doi: 10.1016/S0090-8258(03)00274-9. [DOI] [PubMed] [Google Scholar]
  27. Wu T.I., Chang T.C., Hsueh S., Hsu K.H., Chou H.H., Huang H.J., Lai C.H. Prognostic factors and impact of adjuvant chemotherapy for uterine leiomyosarcoma. Gynecol Oncol. 2006;100:166–172. doi: 10.1016/j.ygyno.2005.08.010. [DOI] [PubMed] [Google Scholar]
  28. Yanagi S., Shimbara N., Tamura T.A. Tissue and cell distribution of a mammalian proteasomal ATPase, MSS1, and its complex formation with the basal transcription factors. Biochem Biophys Res Commun. 2000;279:568–573. doi: 10.1006/bbrc.2000.3969. [DOI] [PubMed] [Google Scholar]
  29. Ylisaukko-oja S.K., Kiuru M., Lehtonen H.J., Lehtonen R., Pukkala E., Arola J., Launonen V., Aaltonen L.A. Analysis of fumarate hydratase mutations in a population-based series of early onset uterine leiomyosarcoma patients. Int J Cancer. 2006;119:283–287. doi: 10.1002/ijc.21798. [DOI] [PubMed] [Google Scholar]
  30. Zaloudek C., Hendrickson M.R. Mesenchymal tumors of the uterus. In: Kurman R.J., editor. Blaustein’s Pathology of the Female Genital Tract. ed 5. New York: Springer-Verlag; 2002. pp. 561–578. [Google Scholar]
  31. Zhai Y.L., Kobayashi Y., Mori A., Orii A., Nikaido T., Konishi I., Fujii S. Expression of steroid receptors, Ki-67, and p53 in uterine leiomyosarcomas. Int J Gynecol Pathol. 1999;18:20–28. doi: 10.1097/00004347-199901000-00004. [DOI] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES