Abstract
Genome duplication in E. coli is carried out by DNA polymerase III, an enzyme complex consisting of ten subunits. Investigations of the biochemical and structural properties of DNA polymerase III require the expression and purification of subunits including α, ge, θ, γ, δ′, δ, and β separately followed by in vitro reconstitution of the pol III core and clamp loader. Here we propose a new method for expressing and purifying DNA polymerase III components by utilizing a protein co-expression strategy. Our results show that the subunits of the pol III core and those of the clamp loader can be coexpressed and purified based on inherent interactions between the subunits. The resulting pol III core, clamp loader and sliding clamp can be reconstituted effectively to perform DNA polymerization. Our strategy considerably simplifies the expression and purification of DNA polymerase III and provides a feasible and convenient method for exploring other multi-subunit systems.
Keywords: E. coli, DNA polymerase III, coexpression, purification
Contributor Information
Li-Jun Bi, Email: blj@sun5.ibp.ac.cn.
Xian-En Zhang, Email: x.zhang@wh.iov.cn.
References
- Bruck I., Georgescu R.E., O’Donnell M. Conserved interactions in the Staphylococcus aureus DNA PolC chromosome replication machine. J Biol Chem. 2005;280:18152–18162. doi: 10.1074/jbc.M413595200. [DOI] [PubMed] [Google Scholar]
- Bruck I., O’Donnell M. The DNA replication machine of a gram-positive organism. J Biol Chem. 2000;275:28971–28983. doi: 10.1074/jbc.M003565200. [DOI] [PubMed] [Google Scholar]
- Bruck I., Yuzhakov A., Yurieva O., Jeruzalmi D., Skangalis M., Kuriyan J., O’Donnell M. Analysis of a multicomponent thermostable DNA polymerase III replicase from an extreme thermophile. J Biol Chem. 2002;277:17334–17348. doi: 10.1074/jbc.M110198200. [DOI] [PubMed] [Google Scholar]
- Bullard J.M., Williams J.C., Acker W.K., Jacobi C., Janjic N., McHenry C.S. DNA polymerase III holoenzyme from Thermus thermophilus identification, expression, purification of components, and use to reconstitute a processive replicase. J Biol Chem. 2002;277:13401–13408. doi: 10.1074/jbc.M110833200. [DOI] [PubMed] [Google Scholar]
- Horiuchi T., Maki H., Sekiguchi M. A new conditional lethal mutator (dnaQ49) in Escherichia coli K12. Mol Gen Genet. 1978;163:277–283. doi: 10.1007/BF00271956. [DOI] [PubMed] [Google Scholar]
- Johnson A., O’Donnell M. Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem. 2005;74:283–315. doi: 10.1146/annurev.biochem.73.011303.073859. [DOI] [PubMed] [Google Scholar]
- Kunkel T.A. The mutational specificity of DNA polymerasebeta during in vitro DNA synthesis. Production of frameshift, base substitution, and deletion mutations. J Biol Chem. 1985;260:5787–5796. [PubMed] [Google Scholar]
- Li F., Liu Q., Chen Y.Y., Yu Z.N., Zhang Z.P., Zhou Y.F., Deng J.Y., Bi L.J., Zhang X.E. Escherichia coli mismatch repair protein MutL interacts with the clamp loader subunits of DNA polymerase III. Mutat Res. 2008;637:101–110. doi: 10.1016/j.mrfmmm.2007.07.008. [DOI] [PubMed] [Google Scholar]
- Naktinis V., Onrust R., Fang L., O’Donnell M. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. II. Intermediate complex between the clamp loader and its clamp. J Biol Chem. 1995;270:13358–13365. doi: 10.1074/jbc.270.22.13358. [DOI] [PubMed] [Google Scholar]
- Onrust R., Finkelstein J., Naktinis V., Turner J., Fang L., O’Donnell M. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. I. Organization of the clamp loader. J Biol Chem. 1995;270:13348–13357. doi: 10.1074/jbc.270.22.13348. [DOI] [PubMed] [Google Scholar]
- Onrust R., Finkelstein J., Turner J., Naktinis V., O’Donnell M. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. III. Interface between two polymerases and the clamp loader. J Biol Chem. 1995;270:13366–13377. doi: 10.1074/jbc.270.22.13366. [DOI] [PubMed] [Google Scholar]
- Strauss B., Kelly K., Dincman T., Ekiert D., Biesieda T., Song R. Cell death in Escherichia coli dnaE(Ts) mutants incubated at a nonpermissive temperature is prevented by mutation in the cydA gene. J Bacteriol. 2004;186:2147–2155. doi: 10.1128/JB.186.7.2147-2155.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stukenberg P.T., O’Donnell M. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. V. Four different polymerase-clamp complexes on DNA. J Biol Chem. 1995;270:13384–13391. doi: 10.1074/jbc.270.22.13384. [DOI] [PubMed] [Google Scholar]
- Tolia N.H., Joshua-Tor L. Strategies for protein coexpression in Escherichia coli. Nat Methods. 2006;3:55–64. doi: 10.1038/nmeth0106-55. [DOI] [PubMed] [Google Scholar]
- Wechsler J.A., Gross J.D. Escherichia coli mutants temperature-sensitive for DNA synthesis. Mol Gen Genet. 1971;113:273–284. doi: 10.1007/BF00339547. [DOI] [PubMed] [Google Scholar]
- Xiao H., Naktinis V., O’Donnell M. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. IV. ATP-binding site mutants identify the clamp loader. J Biol Chem. 1995;270:13378–13383. doi: 10.1074/jbc.270.22.13378. [DOI] [PubMed] [Google Scholar]