Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2011 Mar 15;1(9):847–858. doi: 10.1007/s13238-010-0100-4

Nucleotide bias of DCL and AGO in plant anti-virus gene silencing

Thien Ho 1,2, Liang Wang 3, Linfeng Huang 1, Zhigang Li 1, Denise W Pallett 1, Tamas Dalmay 4, Kazusato Ohshima 5, John A Walsh 6, Hui Wang 1,
PMCID: PMC4875223  PMID: 21203927

Abstract

Plant Dicer-like (DCL) and Argonaute (AGO) are the key enzymes involved in anti-virus post-transcriptional gene silencing (AV-PTGS). Here we show that AV-PTGS exhibited nucleotide preference by calculating a relative AV-PTGS efficiency on processing viral RNA substrates. In comparison with genome sequences of dicot-infecting Turnip mosaic virus (TuMV) and monocot-infecting Cocksfoot streak virus (CSV), viral-derived small interfering RNAs (vsiRNAs) displayed positive correlations between AV-PTGS efficiency and G+C content (GC%). Further investigations on nucleotide contents revealed that the vsiRNA populations had G-biases. This finding was further supported by our analyses of previously reported vsiRNA populations in diverse plant-virus associations, and AGO associated Arabidopsis endogenous siRNA populations, indicating that plant AGOs operated with G-preference. We further propose a hypothesis that AV-PTGS imposes selection pressure(s) on the evolution of plant viruses. This hypothesis was supported when potyvirus genomes were analysed for evidence of GC elimination, suggesting that plant virus evolution to have low GC% genomes would have a unique function, which is to reduce the host AV-PTGS attack during infections.

Electronic Supplementary Material

The online version of this article (doi:10.1007/s13238-010-0100-4 contains supplementary material, which is available to authorized users.

Keywords: anti-virus post-transcriptional gene silencing, siRNA, nucleotide bias, Dicer-like, Argonaute, plant virus evolution

Electronic Supplementary Material

Table (PDF 24 KB) (22.1KB, pdf)
Table (PDF 96 KB) (93.8KB, pdf)
Table (PDF 16 KB) (12.1KB, pdf)
Figure (PDF 856 KB) (853.6KB, pdf)

Footnotes

Electronic Supplementary Material

The online version of this article (doi:10.1007/s13238-010-0100-4 contains supplementary material, which is available to authorized users.

References

  1. Aliyari R., Ding S.W. RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol Rev. 2009;227:176–188. doi: 10.1111/j.1600-065X.2008.00722.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brackney, D.E., Beane, J.E., Ebel, G.D., and Holmes, E.C. (2009). RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification. PLoS Pathog 5, e1000502. [DOI] [PMC free article] [PubMed]
  3. Brodersen P., Sakvarelidze-Achard L., Bruun-Rasmussen M., Dunoyer P., Yamamoto Y.Y., Sieburth L., Voinnet O. Widespread translational inhibition by plant miRNAs and siRNAs. Science. 2008;320:1185–1190. doi: 10.1126/science.1159151. [DOI] [PubMed] [Google Scholar]
  4. Burgyán J. Role of silencing suppressor proteins. Methods Mol Biol. 2008;451:69–79. doi: 10.1007/978-1-59745-102-4_5. [DOI] [PubMed] [Google Scholar]
  5. Chan S.W., Henderson I.R., Jacobsen S.E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet. 2005;6:351–360. doi: 10.1038/nrg1601. [DOI] [PubMed] [Google Scholar]
  6. Crooks G.E., Hon G., Chandonia J.M., Brenner S.E. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–1190. doi: 10.1101/gr.849004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Czech B., Malone C.D., Zhou R., Stark A., Schlingeheyde C., Dus M., Perrimon N., Kellis M., Wohlschlegel J.A., Sachidanandam R., et al. An endogenous small interfering RNA pathway in Drosophila. Nature. 2008;453:798–802. doi: 10.1038/nature07007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deleris A., Gallego-Bartolome J., Bao J., Kasschau K.D., Carrington J.C., Voinnet O. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science. 2006;313:68–71. doi: 10.1126/science.1128214. [DOI] [PubMed] [Google Scholar]
  9. Ding S.W., Voinnet O. Antiviral immunity directed by small RNAs. Cell. 2007;130:413–426. doi: 10.1016/j.cell.2007.07.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Donaire L., Barajas D., Martínez-García B., Martínez-Priego L., Pagán I., Llave C. Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs. J Virol. 2008;82:5167–5177. doi: 10.1128/JVI.00272-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Donaire L., Wang Y., Gonzalez-Ibeas D., Mayer K.F., Aranda M.A., Llave C. Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology. 2009;392:203–214. doi: 10.1016/j.virol.2009.07.005. [DOI] [PubMed] [Google Scholar]
  12. Du Q.S., Duan C.G., Zhang Z.H., Fang Y.Y., Fang R.X., Xie Q., Guo H.S. DCL4 targets Cucumber mosaic virus satellite RNA at novel secondary structures. J Virol. 2007;81:9142–9151. doi: 10.1128/JVI.02885-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Elena S.F., Agudelo-Romero P., Carrasco P., Codoñer F.M., Martín S., Torres-Barceló C., Sanjuán R. Experimental evolution of plant RNA viruses. Heredity. 2008;100:478–483. doi: 10.1038/sj.hdy.6801088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fahlgren N., Howell M.D., Kasschau K.D., Chapman E.J., Sullivan C.M., Cumbie J.S., Givan S.A., Law T.F., Grant S.R., Dangl J.L., et al. High-throughput sequencing of Arabidopsis micro-RNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE. 2007;2:e219. doi: 10.1371/journal.pone.0000219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grimm D., Kay M.A. Combinatorial RNAi: a winning strategy for the race against evolving targets? Mol Ther. 2007;15:878–888. doi: 10.1038/sj.mt.6300116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Havecker E.R., Wallbridge L.M., Hardcastle T.J., Bush M.S., Kelly K.A., Dunn R.M., Schwach F., Doonan J.H., Baulcombe D. C. The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell. 2010;22:321–334. doi: 10.1105/tpc.109.072199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hershberg R., Petrov D.A. Selection on codon bias. Annu Rev Genet. 2008;42:287–299. doi: 10.1146/annurev.genet.42.110807.091442. [DOI] [PubMed] [Google Scholar]
  18. Ho T., Pallett D., Rusholme R., Dalmay T., Wang H. A simplified method for cloning of short interfering RNAs from Brassica juncea infected with Turnip mosaic potyvirus and Turnip crinkle carmovirus. J Virol Methods. 2006;136:217–223. doi: 10.1016/j.jviromet.2006.05.016. [DOI] [PubMed] [Google Scholar]
  19. Ho T., Wang H., Pallett D., Dalmay T. Evidence for targeting common siRNA hotspots and GC preference by plant Dicer-like proteins. FEBS Lett. 2007;581:3267–3272. doi: 10.1016/j.febslet.2007.06.022. [DOI] [PubMed] [Google Scholar]
  20. Ho T., Rusholme Pilcher R.L., Edwards M.L., Cooper I., Dalmay T., Wang H. Evidence for GC preference by monocot Dicer-like proteins. Biochem Biophys Res Commun. 2008;368:433–437. doi: 10.1016/j.bbrc.2008.01.110. [DOI] [PubMed] [Google Scholar]
  21. Höck J., Meister G. The Argonaute protein family. Genome Biol. 2008;9:210. doi: 10.1186/gb-2008-9-2-210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hutvagner G., Simard M.J. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol. 2008;9:22–32. doi: 10.1038/nrm2321. [DOI] [PubMed] [Google Scholar]
  23. Jinek M., Doudna J.A. A three-dimensional view of the molecular machinery of RNA interference. Nature. 2009;457:405–412. doi: 10.1038/nature07755. [DOI] [PubMed] [Google Scholar]
  24. Kasschau K.D., Fahlgren N., Chapman E.J., Sullivan C.M., Cumbie J.S., Givan S.A., Carrington J.C. Genomewide profiling and analysis of Arabidopsis siRNAs. PLoS Biol. 2007;5:e57. doi: 10.1371/journal.pbio.0050057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Linsen S.E., de Wit E., Janssens G., Heater S., Chapman L., Parkin R.K., Fritz B., Wyman S.K., de Bruijn E., Voest E.E., et al. Limitations and possibilities of small RNA digital gene expression profiling. Nat Methods. 2009;6:474–476. doi: 10.1038/nmeth0709-474. [DOI] [PubMed] [Google Scholar]
  26. Lister R., O’Malley R.C., Tonti-Filippini J., Gregory B.D., Berry C.C., Millar A.H., Ecker J.R. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell. 2008;133:523–536. doi: 10.1016/j.cell.2008.03.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Liu B., Chen Z., Song X., Liu C., Cui X., Zhao X., Fang J., Xu W., Zhang H., Wang X., et al. Oryza sativa dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell. 2007;19:2705–2718. doi: 10.1105/tpc.107.052209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ma J.B., Yuan Y.R., Meister G., Pei Y., Tuschl T., Patel D.J. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature. 2005;434:666–670. doi: 10.1038/nature03514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Matranga C., Tomari Y., Shin C., Bartel D.P., Zamore P.D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell. 2005;123:607–620. doi: 10.1016/j.cell.2005.08.044. [DOI] [PubMed] [Google Scholar]
  30. Matzke M., Kanno T., Huettel B., Daxinger L., Matzke A.J. Targets of RNA-directed DNA methylation. Curr Opin Plant Biol. 2007;10:512–519. doi: 10.1016/j.pbi.2007.06.007. [DOI] [PubMed] [Google Scholar]
  31. Mi S., Cai T., Hu Y., Chen Y., Hodges E., Ni F., Wu L., Li S., Zhou H., Long C., et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell. 2008;133:116–127. doi: 10.1016/j.cell.2008.02.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mlotshwa S., Pruss G.J., Vance V. Small RNAs in viral infection and host defense. Trends Plant Sci. 2008;13:375–382. doi: 10.1016/j.tplants.2008.04.009. [DOI] [PubMed] [Google Scholar]
  33. Molnár A., Csorba T., Lakatos L., Várallyay E., Lacomme C., Burgyán J. Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol. 2005;79:7812–7818. doi: 10.1128/JVI.79.12.7812-7818.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Montgomery T.A., Howell M.D., Cuperus J.T., Li D., Hansen J.E., Alexander A.L., Chapman E.J., Fahlgren N., Allen E., Carrington J.C. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell. 2008;133:128–141. doi: 10.1016/j.cell.2008.02.033. [DOI] [PubMed] [Google Scholar]
  35. Navarro B., Pantaleo V., Gisel A., Moxon S., Dalmay T., Bisztray G., Di Serio F., Burgyán J., Liu D.X. Deep sequencing of viroid-derived small RNAs from grapevine provides new insights on the role of RNA silencing in plant-viroid interaction. PLoS ONE. 2009;4:e7686. doi: 10.1371/journal.pone.0007686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ohshima K., Akaishi S., Kajiyama H., Koga R., Gibbs A.J. Evolutionary trajectory of turnip mosaic virus populations adapting to a new host. J Gen Virol. 2010;91:788–801. doi: 10.1099/vir.0.016055-0. [DOI] [PubMed] [Google Scholar]
  37. Parker J.S., Roe S.M., Barford D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature. 2005;434:663–666. doi: 10.1038/nature03462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pei Y., Tuschl T. On the art of identifying effective and specific siRNAs. Nat Methods. 2006;3:670–676. doi: 10.1038/nmeth911. [DOI] [PubMed] [Google Scholar]
  39. Qi X., Bao F.S., Xie Z., Aramayo R. Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS ONE. 2009;4:e4971. doi: 10.1371/journal.pone.0004971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rajagopalan R., Vaucheret H., Trejo J., Bartel D.P. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 2006;20:3407–3425. doi: 10.1101/gad.1476406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rashid U.J., Paterok D., Koglin A., Gohlke H., Piehler J., Chen J.C. Structure of Aquifex aeolicus argonaute highlights conformational flexibility of the PAZ domain as a potential regulator of RNA-induced silencing complex function. J Biol Chem. 2007;282:13824–13832. doi: 10.1074/jbc.M608619200. [DOI] [PubMed] [Google Scholar]
  42. Ruiz-Ferrer V., Voinnet O. Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol. 2009;60:485–510. doi: 10.1146/annurev.arplant.043008.092111. [DOI] [PubMed] [Google Scholar]
  43. Takeda A., Iwasaki S., Watanabe T., Utsumi M., Watanabe Y. The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol. 2008;49:493–500. doi: 10.1093/pcp/pcn043. [DOI] [PubMed] [Google Scholar]
  44. Tan Z., Gibbs A.J., Tomitaka Y., Sánchez F., Ponz F., Ohshima K. Mutations in Turnip mosaic virus genomes that have adapted to Raphanus sativus. J Gen Virol. 2005;86:501–510. doi: 10.1099/vir.0.80540-0. [DOI] [PubMed] [Google Scholar]
  45. Tomari Y., Du T., Haley B., Schwarz D.S., Bennett R., Cook H.A., Koppetsch B.S., Theurkauf W.E., Zamore P.D. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell. 2004;116:831–841. doi: 10.1016/S0092-8674(04)00218-1. [DOI] [PubMed] [Google Scholar]
  46. Vaucheret H. Plant ARGONAUTES. Trends Plant Sci. 2008;13:350–358. doi: 10.1016/j.tplants.2008.04.007. [DOI] [PubMed] [Google Scholar]
  47. Vetsigian K., Goldenfeld N. Genome rhetoric and the emergence of compositional bias. Proc Natl Acad Sci U S A. 2009;106:215–220. doi: 10.1073/pnas.0810122106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wang H., Huang L.F., Cooper J.I. Analyses on mutation patterns, detection of population bottlenecks, and suggestion of deleterious-compensatory evolution among members of the genus Potyvirus. Arch Virol. 2006;151:1625–1633. doi: 10.1007/s00705-006-0741-z. [DOI] [PubMed] [Google Scholar]
  49. Watanabe T., Umehara T., Kohara M. Therapeutic application of RNA interference for hepatitis C virus. Adv Drug Deliv Rev. 2007;59:1263–1276. doi: 10.1016/j.addr.2007.03.022. [DOI] [PubMed] [Google Scholar]
  50. Wei Y., Chen S., Yang P., Ma Z., Kang L. Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust. Genome Biol. 2009;10:R6. doi: 10.1186/gb-2009-10-1-r6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yamamoto T., Tsunetsugu-Yokota Y. Prospects for the therapeutic application of lentivirus-based gene therapy to HIV-1 infection. Curr Gene Ther. 2008;8:1–8. doi: 10.2174/156652308783688536. [DOI] [PubMed] [Google Scholar]
  52. Yang Z., Nielsen R. Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage. Mol Biol Evol. 2008;25:568–579. doi: 10.1093/molbev/msm284. [DOI] [PubMed] [Google Scholar]
  53. Zhai J., Liu J., Liu B., Li P., Meyers B.C., Chen X., Cao X., Ecker J.R. Small RNA-directed epigenetic natural variation in Arabidopsis thaliana. PLoS Genet. 2008;4:e1000056. doi: 10.1371/journal.pgen.1000056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zhang X., Segers G.C., Sun Q., Deng F., Nuss D.L. Characterization of hypovirus-derived small RNAs generated in the chestnut blight fungus by an inducible DCL-2-dependent pathway. J Virol. 2008;82:2613–2619. doi: 10.1128/JVI.02324-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Zhou H., Wang H., Huang L.F., Naylor M., Clifford P. Heterogeneity in codon usages of sobemovirus genes. Arch Virol. 2005;150:1591–1605. doi: 10.1007/s00705-005-0510-4. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Table (PDF 24 KB) (22.1KB, pdf)
Table (PDF 96 KB) (93.8KB, pdf)
Table (PDF 16 KB) (12.1KB, pdf)
Figure (PDF 856 KB) (853.6KB, pdf)

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES