Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2010 Oct 7;1(9):830–841. doi: 10.1007/s13238-010-0109-8

Melanization in living organisms: a perspective of species evolution

Christopher J Vavricka 1,, Bruce M Christensen 2, Jianyong Li 3
PMCID: PMC4875231  PMID: 21203925

Abstract

Eumelanin is a heteropolymer that is generally composed of hydroxylated indole residues and plays diverse protective functions in various species. Melanin is derived from the amino acid tyrosine and production of melanin is a highly complex oxidative process with a number of steps that can either proceed enzymatically or non-enzymatically. Although melanin plays important protective roles in many species, during melanization, particularly in steps that can proceed non-enzymatically, many toxic intermediates are produced, including semiquinones, dopaquinone, indole-quinones and moreover, the production of many reactive oxygen species. To mitigate the production of reactive species, a number of proteins that regulate the biochemical process of melanization have evolved in various living species, which is closely related to adaptation and physiological requirements. In this communication, we discuss differences between non-enzymatic and enzymatic processes of melanization and the enzymatic regulation of melanization in difference species with an emphasis on differences between mammals and insects. Comparison between melanization and insect sclerotization is also emphasized which raises some interesting questions about the current models of these pathways.

Keywords: melanization, melanogenesis, sclerotization, tanning, dopa, tyrosinase, dopachrome tautomerase

References

  1. Andersen S.O. Insect cuticular sclerotization: a review. Insect Biochem Mol Biol. 2010;40:166–178. doi: 10.1016/j.ibmb.2009.10.007. [DOI] [PubMed] [Google Scholar]
  2. Aroca P., Garcia-Borron J.C., Solano F., Lozano J.A. Regulation of mammalian melanogenesis. I: Partial purification and characterization of a dopachrome converting factor: dopachrome tautomerase. Biochim Biophys Acta. 1990;1035:266–275. doi: 10.1016/0304-4165(90)90088-E. [DOI] [PubMed] [Google Scholar]
  3. Aroca P., Solano F., Garcia-Borrón J.C., Lozano J.A. Specificity of dopachrome tautomerase and inhibition by carboxylated indoles. Considerations on the enzyme active site. Biochem J. 1991;277:393–397. doi: 10.1042/bj2770393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aso Y., Kramer K.J., Hopkins T.L., Whetzel S.Z. Properties of tyrosinase and dopa quinone imine conversion factor from pharate pupal cuticle ofManduca sexta L. Insect Biochem. 1984;14:463–472. doi: 10.1016/0020-1790(84)90103-3. [DOI] [Google Scholar]
  5. Barber J.I., Townsend D., Olds D.P., King R.A. Dopachrome oxidoreductase: a new enzyme in the pigment pathway. J Invest Dermatol. 1984;83:145–149. doi: 10.1111/1523-1747.ep12263381. [DOI] [PubMed] [Google Scholar]
  6. Cánovas F.G., García-Carmona F., Sánchez J.V., Pastor J.L., Teruel J.A. The role of pH in the melanin biosynthesis pathway. J Biol Chem. 1982;257:8738–8744. [PubMed] [Google Scholar]
  7. Cardinali G., Bolasco G., Aspite N., Lucania G., Lotti L.V., Torrisi M.R., Picardo M. Melanosome transfer promoted by keratinocyte growth factor in light and dark skin-derived keratinocytes. J Invest Dermatol. 2008;128:558–567. doi: 10.1038/sj.jid.5701063. [DOI] [PubMed] [Google Scholar]
  8. Cheli Y., Ohanna M., Ballotti R., Bertolotto C. Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res. 2009;23:27–40. doi: 10.1111/j.1755-148X.2009.00653.x. [DOI] [PubMed] [Google Scholar]
  9. Drapeau M.D. The Family of Yellow-Related Drosophila melanogaster Proteins. Biochem Biophys Res Commun. 2001;281:611–613. doi: 10.1006/bbrc.2001.4391. [DOI] [PubMed] [Google Scholar]
  10. Han Q., Fang J., Ding H., Johnson J.K., Christensen B.M., Li J. Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes. Biochem J. 2002;368:333–340. doi: 10.1042/bj20020272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hearing V.J. Biochemical control of melanogenesis and melanosomal organization. J Investig Dermatol Symp Proc. 1999;4:24–28. doi: 10.1038/sj.jidsp.5640176. [DOI] [PubMed] [Google Scholar]
  12. Hearing V.J., Korner A.M., Pawelek J.M. New regulators of melanogenesis are associated with purified tyrosinase isozymes. J Invest Dermatol. 1982;79:16–18. doi: 10.1111/1523-1747.ep12510422. [DOI] [PubMed] [Google Scholar]
  13. Hernández-Romero D., Sanchez-Amat A., Solano F. A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio. FEBS J. 2006;273:257–270. doi: 10.1111/j.1742-4658.2005.05038.x. [DOI] [PubMed] [Google Scholar]
  14. Hopkins T.L., Morgan T.D., Aso Y., Kramer K.J. N-beta-Alanyldopamine: Major Role in Insect Cuticle Tanning. Science. 1982;217:364–366. doi: 10.1126/science.217.4557.364. [DOI] [PubMed] [Google Scholar]
  15. Jackson I.J., Chambers D.M., Tsukamoto K., Copeland N.G., Gilbert D.J., Jenkins N.A., Hearing V. A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus. EMBO J. 1992;11:527–535. doi: 10.1002/j.1460-2075.1992.tb05083.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jara J.R., Solano F., Lozano J.A. Assays for mammalian tyrosinase: a comparative study. Pigment Cell Res. 1988;1:332–339. doi: 10.1111/j.1600-0749.1988.tb00128.x. [DOI] [PubMed] [Google Scholar]
  17. Jiang S., Liu X.M., Dai X., Zhou Q., Lei T.C., Beermann F., Wakamatsu K., Xu S.Z. Regulation of DHICA-mediated antioxidation by dopachrome tautomerase: implication for skin photoprotection against UVA radiation. Free Radic Biol Med. 2010;48:1144–1151. doi: 10.1016/j.freeradbiomed.2010.01.033. [DOI] [PubMed] [Google Scholar]
  18. Johnson J.K., Li J., Christensen B.M. Cloning and characterization of a dopachrome conversion enzyme from the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol. 2001;31:1125–1135. doi: 10.1016/S0965-1748(01)00072-8. [DOI] [PubMed] [Google Scholar]
  19. Karlson P., Sekeris C.E. N acetyl-dopamine as sclerotizing agent of the insect cuticle. Nature. 1962;195:183–184. doi: 10.1038/195183a0. [DOI] [Google Scholar]
  20. Kim S.R., Yao R., Han Q., Christensen B.M., Li J. Identification and molecular characterization of a prophenoloxidase involved in Aedes aegypti chorion melanization. Insect Mol Biol. 2005;14:185–194. doi: 10.1111/j.1365-2583.2004.00547.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Korner A.M., Gettins P. Synthesis in vitro of 5,6-dihydroxyindole-2-carboxylic acid by dopachrome conversion Fact or from Cloudman S91 melanoma cells. J Invest Dermatol. 1985;85:229–231. doi: 10.1111/1523-1747.ep12276688. [DOI] [PubMed] [Google Scholar]
  22. Körner A.M., Pawelek J. Dopachrome conversion: a possible control point in melanin biosynthesis. J Invest Dermatol. 1980;75:192–195. doi: 10.1111/1523-1747.ep12522650. [DOI] [PubMed] [Google Scholar]
  23. Lamoreux M.L., Woolley C., Pendergast P. Genetic controls over activities of tyrosinase and dopachrome conversion factor in murine melanocytes. Genetics. 1986;113:967–984. doi: 10.1093/genetics/113.4.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leonard L.J., Townsend D., King R.A. Dopachrome conversion in the eumelanin pathway—product and control. Pigment Cell Res. 1988;1:289–289. [Google Scholar]
  25. Li J., Zhao X., Christensen B.M. Dopachrome conversion activity in Aedes aegypti: significance during melanotic encapsulation of parasites and cuticular tanning. Insect Biochem Mol Biol. 1994;24:1043–1049. doi: 10.1016/0965-1748(94)90142-2. [DOI] [PubMed] [Google Scholar]
  26. Li J.S., Ruyl Kim S., Christensen B.M., Li J. Purification and primary structural characterization of prophenoloxidases from Aedes aegypti larvae. Insect Biochem Mol Biol. 2005;35:1269–1283. doi: 10.1016/j.ibmb.2005.07.001. [DOI] [PubMed] [Google Scholar]
  27. Li J.S., Vavricka C.J., Christensen B.M., Li J. Proteomic analysis of N-glycosylation in mosquito dopachrome conversion enzyme. Proteomics. 2007;7:2557–2569. doi: 10.1002/pmic.200601053. [DOI] [PubMed] [Google Scholar]
  28. Li J.Y., Christensen B.M. Effect of pH on the oxidation pathway of dopamine and dopa. J Electroanal Chem. 1994;375:219–231. doi: 10.1016/0022-0728(94)03389-7. [DOI] [Google Scholar]
  29. Li J.Y., Zhang F.J., Christensen B.M. Involvement of lactones in the formation of 6-hydroxydopa and 6-hydroxyhydrocaffeic acid during oxidation of dopa and hydrocaffeic acid. J Electroanal Chem. 1996;412:19–29. doi: 10.1016/0022-0728(96)04602-5. [DOI] [Google Scholar]
  30. Marles L.K., Peters E.M., Tobin D.J., Hibberts N.A., Schallreuter K.U. Tyrosine hydroxylase isoenzyme I is present in human melanosomes: a possible novel function in pigmentation. Exp Dermatol. 2003;12:61–70. doi: 10.1034/j.1600-0625.2003.120108.x. [DOI] [PubMed] [Google Scholar]
  31. Matoba Y., Kumagai T., Yamamoto A., Yoshitsu H., Sugiyama M. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J Biol Chem. 2006;281:8981–8990. doi: 10.1074/jbc.M509785200. [DOI] [PubMed] [Google Scholar]
  32. Michard Q., Commo S., Belaidi J.P., Alleaume A.M., Michelet J.F., Daronnat E., Eilstein J., Duche D., Marrot L., Bernard B.A. TRP-2 specifically decreases WM35 cell sensitivity to oxidative stress. Free Radic Biol Med. 2008;44:1023–1031. doi: 10.1016/j.freeradbiomed.2007.11.021. [DOI] [PubMed] [Google Scholar]
  33. Michard Q., Commo S., Rocchetti J., El Houari F., Alleaume A. M., Wakamatsu K., Ito S., Bernard B.A. TRP-2 expression protects HEK cells from dopamine- and hydroquinone-induced toxicity. Free Radic Biol Med. 2008;45:1002–1010. doi: 10.1016/j.freeradbiomed.2008.06.030. [DOI] [PubMed] [Google Scholar]
  34. Nappi A.J., Vass E. Melanogenesis and the generation of cytotoxic molecules during insect cellular immune reactions. Pigment Cell Res. 1993;6:117–126. doi: 10.1111/j.1600-0749.1993.tb00590.x. [DOI] [PubMed] [Google Scholar]
  35. Nappi A.J., Vass E., Frey F., Carton Y. Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. Eur J Cell Biol. 1995;68:450–456. [PubMed] [Google Scholar]
  36. Olivares C., Jiménez-Cervantes C., Lozano J.A., Solano F., García-Borrón J.C. The 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidase activity of human tyrosinase. Biochem J. 2001;354:131–139. doi: 10.1042/bj3540131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pak B.J., Lee J., Thai B.L., Fuchs S.Y., Shaked Y., Ronai Z., Kerbel R.S., Ben-David Y. Radiation resistance of human melanoma analysed by retroviral insertional mutagenesis reveals a possible role for dopachrome tautomerase. Oncogene. 2004;23:30–38. doi: 10.1038/sj.onc.1207007. [DOI] [PubMed] [Google Scholar]
  38. Palumbo A., d’Ischia M., Misuraca G., Prota G. Effect of metal ions on the rearrangement of dopachrome. Biochim Biophys Acta. 1987;925:203–209. doi: 10.1016/0304-4165(87)90110-3. [DOI] [PubMed] [Google Scholar]
  39. Palumbo A., Solano F., Misuraca G., Aroca P., Garcia Borron J.C., Lozano J.A., Prota G. Comparative action of dopachrome tautomerase and metal ions on the rearrangement of dopachrome. Biochim Biophys Acta. 1991;1115:1–5. doi: 10.1016/0304-4165(91)90003-Y. [DOI] [PubMed] [Google Scholar]
  40. Palumbo A., Solano F., Misuraca G., Aroca P., Garcia Borron J.C., Lozano J.A., Prota G. Comparative action of dopachrome tautomerase and metal ions on the rearrangement of dopachrome. Biochim Biophys Acta. 1991;1115:1–5. doi: 10.1016/0304-4165(91)90003-Y. [DOI] [PubMed] [Google Scholar]
  41. Pawelek J.M. Dopachrome conversion factor functions as an isomerase. Biochem Biophys Res Commun. 1990;166:1328–1333. doi: 10.1016/0006-291X(90)91011-G. [DOI] [PubMed] [Google Scholar]
  42. Pawelek J.M., Lerner A.B. 5,6-Dihydroxyindole is a melanin precursor showing potent cytotoxicity. Nature. 1978;276:626–628. doi: 10.1038/276627a0. [DOI] [PubMed] [Google Scholar]
  43. Powell B.J. 5,6-Dihydroxyindole-2-carboxylic acid: a first principles density functional study. Chem Phys Lett. 2005;402:111–115. doi: 10.1016/j.cplett.2004.12.010. [DOI] [Google Scholar]
  44. Prota G. Melanins and melanogenesis. San Diego: Academic Press; 1992. [Google Scholar]
  45. Townsend, D., Oetting, W.S., Polman, T., and King, R.A. (1992). Purification and Characterization of Dopachrome-Tautomerase (Dt). Pigment Cell Research, 32–35. [DOI] [PubMed]
  46. Vavricka C.J., Ray K.W., Christensen B.M., Li J. Purification and N-glycosylation analysis of melanoma antigen dopachrome tautomerase. Protein J. 2010;29:204–212. doi: 10.1007/s10930-010-9241-9. [DOI] [PubMed] [Google Scholar]
  47. Wang R.F., Appella E., Kawakami Y., Kang X., Rosenberg S. A. Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med. 1996;184:2207–2216. doi: 10.1084/jem.184.6.2207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES