Abstract
We have previously described a novel artificial NFEV β-secretase (BACE1) cleavage site, which when introduced into the amyloid-β precursor protein (APP), significantly enhances APP cleavage by BACE1 in in vitro and cellular assays. In this study, we describe the identification and characterization of a single chain fragment of variable region (scFv), specific to the EV neo-epitope derived from BACE1 cleavage of the NFEV-containing peptide, and its conversion to IgG1. Both the scFv displayed on phage and EV-IgG1 show exquisite specificity for binding to the EV neoepitope without cross-reactivity to other NFEV containing peptides or WT-APP KMDA cleavage products. EV-IgG1 can detect as little as 0.3 nmol/L of the EV peptide. EV-IgG1 antibody was purified, conjugated with alkaline phosphatase and utilized in various biological assays. In the BACE1 enzymatic assay using NFEV substrate, a BACE1 inhibitor MRK-3 inhibited cleavage with an IC50 of 2.4 nmol/L with excellent reproducibility. In an APP_NFEV stable SH-SY5Y cellular assay, the EC50 for inhibition of EV-Aβ peptide secretion with MRK-3 was 236 nmol/L, consistent with values derived using an EV polyclonal antibody. In an APP_NFEV knock-in mouse model, both Aβ_EV40 and Aβ_EV42 peptides in brain homogenate showed excellent gene dosage dependence. In conclusion, the EV neoepitope specific monoclonal antibody is a novel reagent for BACE1 inhibitor discovery for both in vitro, cellular screening assays and in vivo biochemical studies. The methods described herein are generally applicable to novel synthetic substrates and enzyme targets to enable robust screening platforms for enzyme inhibitors.
Keywords: scFv, antibody, BACE1, amyloid-β precursor protein (APP), immunoassay
References
- An Z., Forrest G., Moore R., Cukan M., Hayto P., Huang L., Vitelli S., Zhao J., Lu P., Hua J., Gibson C.R., Harvey B.R., Montgomery D., Zaller D., Wang F., Strohl W. IgG2m4, an engineered antibody isotype with reduced Fc function. mAbs. 2009;1:572–579. doi: 10.4161/mabs.1.6.10185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cai H., Wang Y., McCarthy D., Wen H., Borchelt D.R., Price D.L., Wong P.C. BACE1 is the major β-secretase for generation of Abeta peptides by neurons. Nat Neurosci. 2001;4:233–234. doi: 10.1038/85064. [DOI] [PubMed] [Google Scholar]
- Copeland R.A. Evaluation of enzyme inhibitors in drug discovery. A guide for medicinal chemists and pharmacologists. Methods Biochem Anal. 2005;46:1–265. [PubMed] [Google Scholar]
- Harrison S.M., Harper A.J., Hawkins J., Duddy G., Grau E., Pugh P.L., Winter P.H., Shilliam C.S., Hughes Z.A., Dawson L.A., et al. BACE1 (beta-secretase) transgenic and knockout mice: identification of neurochemical deficits and behavioral changes. Mol Cell Neurosci. 2003;24:646–655. doi: 10.1016/S1044-7431(03)00227-6. [DOI] [PubMed] [Google Scholar]
- McCampbell A., Wessner K., Marlatt M.W., Wolffe C., Toolan D., Podtelezhnikov A., Yeh S., Zhang R., Szczerba P., Tanis K.Q., et al. Induction of Alzheimer’s-like changes in brain of mice expressing mutant APP fed excess methionine. J Neurochem. 2011;116:82–92. doi: 10.1111/j.1471-4159.2010.07087.x. [DOI] [PubMed] [Google Scholar]
- Miller M.D., Geleziunas R., Bianchi E., Lennard S., Hrin R., Zhang H., Lu M., An Z., Ingallinella P., Finotto M., et al. A human monoclonal antibody neutralizes diverse HIV-1 isolates by binding a critical gp41 epitope. Proc Natl Acad Sci U S A. 2005;102:14759–14764. doi: 10.1073/pnas.0506927102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montgomery D.L., Wang Y., Hrin R., Luftig M., Su B., Miller M.D., Wang F., Haytko P., Huang L., Vitelli S., Condra J., Liu X., Hampton R., Carfi A., Pessi A., Bianchi E., Joyce J., Lloyd C., Geleziunas R., Bramhill D., King V.M., Finnefrock A.C., Strohl W., An Z. Affinity maturation and characterization of a human monoclonal antibody against HIV-1 gp41. mAbs. 2009;1:462–474. doi: 10.4161/mabs.1.5.9214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palys T.J., Schmid K.E., Scherer J.M., Schoepp R.J. Conversion of a mouse Fab into a whole humanized IgG antibody for detecting botulinum toxin. Hum Antibodies. 2006;15:125–132. [PubMed] [Google Scholar]
- Pietrak B.L., Crouthamel M.C., Tugusheva K., Lineberger J.E., Xu M., DiMuzio J.M., Steele T., Espeseth A.S., Stachel S.J., Coburn C.A., et al. Biochemical and cell-based assays for characterization of BACE-1 inhibitors. Anal Biochem. 2005;342:144–151. doi: 10.1016/j.ab.2005.04.019. [DOI] [PubMed] [Google Scholar]
- Rüfenacht P., Güntert A., Bohrmann B., Ducret A., Döbeli H. Quantification of the A beta peptide in Alzheimer’s plaques by laser dissection microscopy combined with mass spectrometry. J Mass Spectrom. 2005;40:193–201. doi: 10.1002/jms.739. [DOI] [PubMed] [Google Scholar]
- Sankaranarayanan S., Holahan M.A., Colussi D., Crouthamel M. C., Devanarayan V., Ellis J., Espeseth A., Gates A.T., Graham S.L., Gregro A.R., et al. First demonstration of cerebrospinal fluid and plasma A beta lowering with oral administration of a beta-site amyloid precursor protein-cleaving enzyme 1 inhibitor in nonhuman primates. J Pharmacol Exp Ther. 2009;328:131–140. doi: 10.1124/jpet.108.143628. [DOI] [PubMed] [Google Scholar]
- Sankaranarayanan S., Price E.A., Wu G., Crouthamel M.C., Shi X. P., Tugusheva K., Tyler K.X., Kahana J., Ellis J., Jin L., et al. In vivo beta-secretase 1 inhibition leads to brain Abeta lowering and increased alpha-secretase processing of amyloid precursor protein without effect on neuregulin-1. J Pharmacol Exp Ther. 2008;324:957–969. doi: 10.1124/jpet.107.130039. [DOI] [PubMed] [Google Scholar]
- Shi X., Tugusheva K., Bruce J.E., Luca A., Chen D.E., Hu B., Wu G.X., Price E., Register R.B., Lineberger J., et al. Novel mutation introduced at the β-site of amyloid precursor protein enhances β-secretase cleavage in vitro and in cells. J Alzheimers Dis. 2005;7:139–148. doi: 10.3233/jad-2005-7207. [DOI] [PubMed] [Google Scholar]
- Shi X.P., Chen E., Yin K.C., Na S., Garsky V.M., Lai M.T., Li Y.M., Platchek M., Register R.B., Sardana M.K., et al. The pro domain of β-secretase does not confer strict zymogen-like properties but does assist proper folding of the protease domain. J Biol Chem. 2001;276:10366–10373. doi: 10.1074/jbc.M009200200. [DOI] [PubMed] [Google Scholar]
- Simon A.J., Chen L., Price E., Xu M., Lucka A., Tang M., Chen E., Espeseth A.S., Sardana M., Shi X.P., et al. A genetically engineered mouse model with an enhanced beta-secretase substrate exhibits increased amyloid generation. Neurobiol Aging. 2004;25:S242. doi: 10.1016/S0197-4580(04)80813-3. [DOI] [Google Scholar]
- Sinha S., Lieberburg I. Cellular mechanisms of β-amyloid production and secretion. Proc Natl Acad Sci U S A. 1999;96:11049–11053. doi: 10.1073/pnas.96.20.11049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stachel S.J., Coburn C.A., Steele T.G., Jones K.G., Loutzenhiser E.F., Gregro A.R., Rajapakse H.A., Lai M.T., Crouthamel M.C., Xu M., et al. Structure-based design of potent and selective cell-permeable inhibitors of human beta-secretase (BACE-1) J Med Chem. 2004;47:6447–6450. doi: 10.1021/jm049379g. [DOI] [PubMed] [Google Scholar]
- Tomasselli A.G., Qahwash I., Emmons T.L., Lu Y., Leone J.W., Lull J.M., Fok K.F., Bannow C.A., Smith C.W., Bienkowski M.J., et al. Employing a superior BACE1 cleavage sequence to probe cellular APP processing. J Neurochem. 2003;84:1006–1017. doi: 10.1046/j.1471-4159.2003.01597.x. [DOI] [PubMed] [Google Scholar]
- Turner R.T., 3rd, Koelsch G., Hong L., Castanheira P., Ermolieff J., Ghosh A.K., Tang J. Subsite specificity of memapsin 2 (β-secretase): implications for inhibitor design. Biochemistry. 2001;40:10001–10006. doi: 10.1021/bi015546s. [DOI] [PubMed] [Google Scholar]
- Vassar R., Citron M. Abeta-generating enzymes: recent advances in β- and γ-secretase research. Neuron. 2000;27:419–422. doi: 10.1016/S0896-6273(00)00051-9. [DOI] [PubMed] [Google Scholar]
- Vaughan T.J., Williams A.J., Pritchard K., Osbourn J.K., Pope A. R., Earnshaw J.C., McCafferty J., Hodits R.A., Wilton J., Johnson K.S. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol. 1996;14:309–314. doi: 10.1038/nbt0396-309. [DOI] [PubMed] [Google Scholar]
- Willem M., Garratt A.N., Novak B., Citron M., Kaufmann S., Rittger A., DeStrooper B., Saftig P., Birchmeier C., Haass C. Control of peripheral nerve myelination by the beta-secretase BACE1. Science. 2006;314:664–666. doi: 10.1126/science.1132341. [DOI] [PubMed] [Google Scholar]
- Wu G., Sankaranarayanan S., Hsieh S.H., Simon A.J., Savage M.J. Decrease in brain soluble amyloid precursor protein β (sAPPβ) in Alzheimer’s disease cortex. J Neurosci Res. 2011;89:822–832. doi: 10.1002/jnr.22618. [DOI] [PubMed] [Google Scholar]
- Wu G., Sankaranarayanan S., Tugusheva K., Kahana J., Seabrook G., Shi X.P., King E., Devanarayan V., Cook J.J., Simon A.J. Decrease in age-adjusted cerebrospinal fluid β-secretase activity in Alzheimer’s subjects. Clin Biochem. 2008;41:986–996. doi: 10.1016/j.clinbiochem.2008.04.022. [DOI] [PubMed] [Google Scholar]
- Yang L.B., Lindholm K., Yan R., Citron M., Xia W., Yang X.L., Beach T., Sue L., Wong P., Price D., et al. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med. 2003;9:3–4. doi: 10.1038/nm0103-3. [DOI] [PubMed] [Google Scholar]
