Abstract
In this review we summarize the progress made towards understanding the role of protein-protein interactions in the function of various bioluminescence systems of marine organisms, including bacteria, jellyfish and soft corals, with particular focus on methodology used to detect and characterize these interactions. In some bioluminescence systems, protein-protein interactions involve an “accessory protein” whereby a stored substrate is efficiently delivered to the bioluminescent enzyme luciferase. Other types of complexation mediate energy transfer to an “antenna protein” altering the color and quantum yield of a bioluminescence reaction. Spatial structures of the complexes reveal an important role of electrostatic forces in governing the corresponding weak interactions and define the nature of the interaction surfaces. The most reliable structural model is available for the protein-protein complex of the Ca2+-regulated photoprotein clytin and green-fluorescent protein (GFP) from the jellyfish Clytia gregaria, solved by means of Xray crystallography, NMR mapping and molecular docking. This provides an example of the potential strategies in studying the transient complexes involved in bioluminescence. It is emphasized that structural studies such as these can provide valuable insight into the detailed mechanism of bioluminescence.
Keywords: green-fluorescent protein (GFP), photoprotein, luciferase, lumazine protein, Förster resonance energy transfer (FRET), docking
References
- Anderson J.M., Charbonneau H., Cormier M.J. Mechanism of calcium induction of Renilla bioluminescence. Involvement of a calcium-triggered luciferin binding protein. Biochemistry. 1974;13:1195–1200. doi: 10.1021/bi00703a602. [DOI] [PubMed] [Google Scholar]
- Anderson J.M., Cormier M.J. Lumisomes, the cellular site of bioluminescence in coelenterates. J Biol Chem. 1973;248:2937–2943. [PubMed] [Google Scholar]
- Arnold K., Bordoli L., Kopp J., Schwede T. The SWISSMODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201. doi: 10.1093/bioinformatics/bti770. [DOI] [PubMed] [Google Scholar]
- Baker N.A., Sept D., Joseph S., Holst M.J., McCammon J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA. 2001;98:10037–10041. doi: 10.1073/pnas.181342398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldwin T.O., Treat M.L., Daubner S.C. Cloning and expression of the luxY gene from Vibrio fischeri strain Y-1 in Escherichia coli and complete amino acid sequence of the yellow fluorescent protein. Biochemistry. 1990;29:5509–5515. doi: 10.1021/bi00475a014. [DOI] [PubMed] [Google Scholar]
- Baldwin T.O., Ziegler M.M. The biochemistry and molecular biology of bacterial bioluminescence. In: Mueller F., editor. Chemistry and Biochemistry of Flavoenzymes III. Boca Raton, Florida: CRC pRESS; 1992. pp. 467–530. [Google Scholar]
- Berg O.G., von Hippel P.H. Diffusion-controlled macromolecular interactions. Annu Rev Biophys Biophys Chem. 1985;14:131–160. doi: 10.1146/annurev.bb.14.060185.001023. [DOI] [PubMed] [Google Scholar]
- Campbell Z.T., Baldwin T.O., Miyashita O. Analysis of the bacterial luciferase mobile loop by replica-exchange molecular dynamics. Biophys J. 2010;99:4012–4019. doi: 10.1016/j.bpj.2010.11.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell Z.T., Weichsel A., Montfort W.R., Baldwin T.O. Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit. Biochemistry. 2009;48:6085–6094. doi: 10.1021/bi900003t. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charbonneau H., Cormier M.J. Ca2+-induced bioluminescence in Renilla reniformis. Purification and characterization of a calcium-triggered luciferin-binding protein. J Biol Chem. 1979;254:769–780. [PubMed] [Google Scholar]
- Chatwell L., Illarionova V.A., Illarionov B., Eisenreich W., Huber R., Skerra A., Bacher A., Fischer M. Structure of lumazine protein, an optical transponder of luminescent bacteria. J Mol Biol. 2008;382:44–55. doi: 10.1016/j.jmb.2008.06.052. [DOI] [PubMed] [Google Scholar]
- Cormier M.J. Comparative biochemistry of animal systems. In: Herring P.J., editor. Bioluminescence in Action. London: Academic Press; 1978. pp. 75–108. [Google Scholar]
- Cormier M.J., Charbonneau H. Isolation, properties and function of a calcium-triggered luciferin binding protein. In: Wasserman H.R., editor. Calcium Binding Proteins and Calcium Function. North-Holland: Elsevier; 1977. pp. 481–489. [Google Scholar]
- Cormier M.J., Hori K., Anderson J.M. Bioluminescence in coelenterates. Biochim Biophys Acta. 1974;346:137–164. doi: 10.1016/0304-4173(74)90007-x. [DOI] [PubMed] [Google Scholar]
- Cormier M.J., Lee J., Wampler J.E. Bioluminescence: recent advances. Annu Rev Biochem. 1975;44:255–272. doi: 10.1146/annurev.bi.44.070175.001351. [DOI] [PubMed] [Google Scholar]
- Cutler M.W. Characterization and energy transfer mechanism of the green-fluorescent protein from Aequorea victoria. New Brunswick, NJ: Rutgers University; 1995. [Google Scholar]
- Cutler M.W., Ward W.W. Spectral analysis and proposed model for GFP dimerization. In: Hastings J.W., Kricka L.J., Stanley P.E., editors. Bioluminescence and Chemiluminescence: Molecular Reporting with Photons. New York: Wiley Liss; 1997. pp. 596–599. [Google Scholar]
- Daubner S.C., Astorga A.M., Leisman G.B., Baldwin T.O. Yellow light emission of Vibrio fischeri strain Y-1: purification and characterization of the energy-accepting yellow fluorescent protein. Proc Natl Acad Sci U S A. 1987;84:8912–8916. doi: 10.1073/pnas.84.24.8912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Vries S.J., van Dijk A.D.J., Krzeminski M., van Dijk M., Thureau A., Hsu V., Wassenaar T., Bonvin A.M.J.J. HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins. 2007;69:726–733. doi: 10.1002/prot.21723. [DOI] [PubMed] [Google Scholar]
- DeLuca M., Dempsey M.E., Hori K., Wampler J.E., Cormier M. J. Mechanism of oxidative carbon dioxide production during Renilla reniformis bioluminescence. Proc Natl Acad Sci U S A. 1971;68:1658–1660. doi: 10.1073/pnas.68.7.1658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deng L., Vysotski E.S., Markova S.V., Liu Z.-J., Lee J., Rose J., Wang B.-C. All three Ca2+-binding loops of photoproteins bind calcium ions: the crystal structures of calcium-loaded apo-aequorin and apo-obelin. Protein Sci. 2005;14:663–675. doi: 10.1110/ps.041142905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolinsky T.J., Nielsen J.E., McCammon J.A., Baker N.A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 2004;32:W665–W667. doi: 10.1093/nar/gkh381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dominguez C., Boelens R., Bonvin A.M.J.J. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc. 2003;125:1731–1737. doi: 10.1021/ja026939x. [DOI] [PubMed] [Google Scholar]
- Dunlap K., Takeda K., Brehm P. Activation of a calciumdependent photoprotein by chemical signalling through gap junctions. Nature. 1987;325:60–62. doi: 10.1038/325060a0. [DOI] [PubMed] [Google Scholar]
- Eckstein J.W., Cho K.W., Colepicolo P., Ghisla S., Hastings J.W., Wilson T. A time-dependent bacterial bioluminescence emission spectrum in an in vitro single turnover system: energy transfer alone cannot account for the yellow emission of Vibrio fischeri Y-1. Proc Natl Acad Sci U S A. 1990;87:1466–1470. doi: 10.1073/pnas.87.4.1466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher A.J., Raushel F.M., Baldwin T.O., Rayment I. Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 A resolution. Biochemistry. 1995;34:6581–6586. doi: 10.1021/bi00020a002. [DOI] [PubMed] [Google Scholar]
- Fisher A.J., Thompson T.B., Thoden J.B., Baldwin T.O., Rayment I. The 1.5-A resolution crystal structure of bacterial luciferase in low salt conditions. J Biol Chem. 1996;271:21956–21968. doi: 10.1074/jbc.271.36.21956. [DOI] [PubMed] [Google Scholar]
- Fogel M., Hastings J.W. Bioluminescence: mechanism and mode of control of scintillon activity. Proc Natl Acad Sci U S A. 1972;69:690–693. doi: 10.1073/pnas.69.3.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Förster T. Transfer mechanisms of electronic excitation energy. Radiat Res Suppl. 1960;2:326–339. [Google Scholar]
- Francisco W.A., Abu-Soud H.M., DelMonte A.J., Singleton D.A., Baldwin T.O., Raushel F.M. Deuterium kinetic isotope effects and the mechanism of the bacterial luciferase reaction. Biochemistry. 1998;37:2596–2606. doi: 10.1021/bi972266x. [DOI] [PubMed] [Google Scholar]
- Haddock S.H.D., Moline M.A., Case J.F. Bioluminescence in the sea. Ann Rev Mar Sci. 2010;2:443–493. doi: 10.1146/annurev-marine-120308-081028. [DOI] [PubMed] [Google Scholar]
- Hart R.C., Matthews J.C., Hori K., Cormier M.J. Renilla reniformis bioluminescence: luciferase-catalyzed production of nonradiating excited states from luciferin analogues and elucidation of the excited state species involved in energy transfer to Renilla green fluorescent protein. Biochemistry. 1979;18:2204–2210. doi: 10.1021/bi00578a011. [DOI] [PubMed] [Google Scholar]
- Harvey E.N. Bioluminescence. New York: Acdademic Press; 1952. p. 649. [Google Scholar]
- Hastings J.W., Eberhard A., Baldwin T.O., Nicoli M.Z., Cline T.W., Nealson K.H. Bacterial bioluminescence: Mechanistic implications of active center chemistry of luciferase. In: Cormier M.J., Hercules D.M., Lee J., editors. Bioluminescence and Chemiluminescence. New York: Plenum Publishing Co; 1973. pp. 369–380. [Google Scholar]
- Hastings J.W., Gibson Q.H. Intermediates in the bioluminescent oxidation of reduced flavin mononucleotide. J Biol Chem. 1963;238:2537–2554. [PubMed] [Google Scholar]
- Hastings J.W., Morin J.G. Calcium-triggered light emission in Renilla. A unitary biochemical scheme for coelenterate bioluminescence. Biochem Biophys Res Commun. 1969;37:493–498. doi: 10.1016/0006-291x(69)90942-5. [DOI] [PubMed] [Google Scholar]
- Hastings J.W., Nealson K.H. Bacterial bioluminescence. Annu Rev Microbiol. 1977;31:549–595. doi: 10.1146/annurev.mi.31.100177.003001. [DOI] [PubMed] [Google Scholar]
- Head J.F., Inouye S., Teranishi K., Shimomura O. The crystal structure of the photoprotein aequorin at 2.3 A resolution. Nature. 2000;405:372–376. doi: 10.1038/35012659. [DOI] [PubMed] [Google Scholar]
- Holmquist M. Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms. Curr Protein Pept Sci. 2000;1:209–235. doi: 10.2174/1389203003381405. [DOI] [PubMed] [Google Scholar]
- Inlow J.K., Baldwin T.O. Mutational analysis of the subunit interface of Vibrio harveyi bacterial luciferase. Biochemistry. 2002;41:3906–3915. doi: 10.1021/bi012113g. [DOI] [PubMed] [Google Scholar]
- Inouye S. Expression, purification and characterization of calcium-triggered luciferin-binding protein of Renilla reniformis. Protein Expr Purif. 2007;52:66–73. doi: 10.1016/j.pep.2006.07.028. [DOI] [PubMed] [Google Scholar]
- Inouye S., Tsuji F.I. Cloning and sequence analysis of cDNA for the Ca(2 +)-activated photoprotein, clytin. FEBS Lett. 1993;315:343–346. doi: 10.1016/0014-5793(93)81191-2. [DOI] [PubMed] [Google Scholar]
- Jeffers C.E., Nichols J.C., Tu S.-C. Complex formation between Vibrio harveyi luciferase and monomeric NADPH:FMN oxidoreductase. Biochemistry. 2003;42:529–534. doi: 10.1021/bi026877n. [DOI] [PubMed] [Google Scholar]
- Jones S., Thornton J.M. Principles of protein-protein interactions. Proc Natl Acad Sci U S A. 1996;93:13–20. doi: 10.1073/pnas.93.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karkhanis Y.D., Cormier M.J. Isolation and properties of Renilla reniformis luciferase, a low molecular weight energy conversion enzyme. Biochemistry. 1971;10:317–326. doi: 10.1021/bi00778a019. [DOI] [PubMed] [Google Scholar]
- Kiel C., Selzer T., Shaul Y., Schreiber G., Herrmann C. Electrostatically optimized Ras-binding Ral guanine dissociation stimulator mutants increase the rate of association by stabilizing the encounter complex. Proc Natl Acad Sci U S A. 2004;101:9223–9228. doi: 10.1073/pnas.0401160101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kulinski T., Visser A.J., O’Kane D.J., Lee J. Spectroscopic investigations of the single tryptophan residue and of riboflavin and 7-oxolumazine bound to lumazine apoprotein from Photobacterium leiognathi. Biochemistry. 1987;26:540–549. doi: 10.1021/bi00376a028. [DOI] [PubMed] [Google Scholar]
- Kumar S., Harrylock M., Walsh K.A., Cormier M.J., Charbonneau H. Amino acid sequence of the Ca2(+)-triggered luciferin binding protein of Renilla reniformis. FEBS Lett. 1990;268:287–290. doi: 10.1016/0014-5793(90)81029-n. [DOI] [PubMed] [Google Scholar]
- Lee J. Lumazine protein and the excitation mechanism in bacterial bioluminescence. Biophys Chem. 1993;48:149–158. doi: 10.1016/0301-4622(93)85006-4. [DOI] [PubMed] [Google Scholar]
- Lee J. Bioluminescence: the first 3000 years. [review] J Sib Fed U Biology. 2008;3:194–205. [Google Scholar]
- Lee J., Gibson B.G., O’Kane D.J., Kohnle A., Bacher A. Fluorescence study of the ligand stereospecificity for binding to lumazine protein. Eur J Biochem. 1992;210:711–719. doi: 10.1111/j.1432-1033.1992.tb17472.x. [DOI] [PubMed] [Google Scholar]
- Lee J., O’Kane D.J., Gibson B.G. Bioluminescence spectral and fluorescence dynamics study of the interaction of lumazine protein with the intermediates of bacterial luciferase bioluminescence. Biochemistry. 1989;28:4263–4271. doi: 10.1021/bi00436a022. [DOI] [PubMed] [Google Scholar]
- Lee J., O’Kane D.J., Visser A.J. Spectral properties and function of two lumazine proteins from Photobacterium. Biochemistry. 1985;24:1476–1483. doi: 10.1021/bi00327a028. [DOI] [PubMed] [Google Scholar]
- Lee J., Wang Y.Y., Gibson B.G. Electronic excitation transfer in the complex of lumazine protein with bacterial bioluminescence intermediates. Biochemistry. 1991;30:6825–6835. doi: 10.1021/bi00242a004. [DOI] [PubMed] [Google Scholar]
- Levine L.D., Ward W.W. Isolation and characterization of a photoprotein, “phialidin,” and a spectrally unique green-fluorescent protein from the bioluminescent jellyfish Phialidium gregarium. Comp Biochem Physiol B Biochem Mol Biol. 1982;72:77–85. [Google Scholar]
- Li L., Liu X., Yang W., Xu F., Wang W., Feng L., Bartlam M., Wang L., Rao Z. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. J Mol Biol. 2008;376:453–465. doi: 10.1016/j.jmb.2007.11.069. [DOI] [PubMed] [Google Scholar]
- Liao D.I., Wawrzak Z., Calabrese J.C., Viitanen P.V., Jordan D.B. Crystal structure of riboflavin synthase. Structure. 2001;9:399–408. doi: 10.1016/s0969-2126(01)00600-1. [DOI] [PubMed] [Google Scholar]
- Liu Z.-J., Stepanyuk G.A., Vysotski E.S., Lee J., Markova S.V., Malikova N.P., Wang B.-C. Crystal structure of obelin after Ca2 +-triggered bioluminescence suggests neutral coelenteramide as the primary excited state. Proc Natl Acad Sci U S A. 2006;103:2570–2575. doi: 10.1073/pnas.0511142103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Z.-J., Vysotski E.S., Chen C.J., Rose J.P., Lee J., Wang B.-C. Structure of the Ca2 +-regulated photoprotein obelin at 1.7 A resolution determined directly from its sulfur substructure. Protein Sci. 2000;9:2085–2093. doi: 10.1110/ps.9.11.2085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lo Conte L., Chothia C., Janin J. The atomic structure of protein-protein recognition sites. J Mol Biol. 1999;285:2177–2198. doi: 10.1006/jmbi.1998.2439. [DOI] [PubMed] [Google Scholar]
- Loening A.M., Fenn T.D., Gambhir S.S. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J Mol Biol. 2007;374:1017–1028. doi: 10.1016/j.jmb.2007.09.078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loening A.M., Fenn T.D., Wu A.M., Gambhir S.S. Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng Des Sel. 2006;19:391–400. doi: 10.1093/protein/gzl023. [DOI] [PubMed] [Google Scholar]
- Lorenz W.W., McCann R.O., Longiaru M., Cormier M.J. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci U S A. 1991;88:4438–4442. doi: 10.1073/pnas.88.10.4438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macheroux P., Schmidt K.U., Steinerstauch P., Ghisla S., Colepicolo P., Buntic R., Hastings J.W. Purification of the yellow fluorescent protein from Vibrio fischeri and identity of the flavin chromophore. Biochem Biophys Res Commun. 1987;146:101–106. doi: 10.1016/0006-291x(87)90696-6. [DOI] [PubMed] [Google Scholar]
- Malikova N.P., Visser N.V., van Hoek A., Skakun V.V., Vysotski E. S., Lee J., Visser A.J.W.G. Green-fluorescent protein from the bioluminescent jellyfish Clytia gregaria is an obligate dimer and does not form a stable complex with the Ca(2 +)-discharged photoprotein clytin. Biochemistry. 2011;50:4232–4241. doi: 10.1021/bi101671p. [DOI] [PubMed] [Google Scholar]
- Markova S.V., Burakova L.P., Frank L.A., Golz S., Korostileva K. A., Vysotski E.S. Green-fluorescent protein from the bioluminescent jellyfish Clytia gregaria: cDNA cloning, expression, and characterization of novel recombinant protein. Photochem Photobiol Sci. 2010;9:757–765. doi: 10.1039/c0pp00023j. [DOI] [PubMed] [Google Scholar]
- Matheson I.B.C., Lee J. Kinetics of bacterial bioluminescence and the fluorescent transient. Photochem Photobiol. 1983;38:231–240. doi: 10.1111/j.1751-1097.1983.tb03867.x. [DOI] [PubMed] [Google Scholar]
- Matthews J.C., Hori K., Cormier M.J. Purification and properties of Renilla reniformis luciferase. Biochemistry. 1977;16:85–91. doi: 10.1021/bi00620a014. [DOI] [PubMed] [Google Scholar]
- Matthews J.C., Hori K., Cormier M.J. Substrate and substrate analogue binding properties of Renilla luciferase. Biochemistry. 1977;16:5217–5220. doi: 10.1021/bi00643a009. [DOI] [PubMed] [Google Scholar]
- Morin J.G., Hastings J.W. Energy transfer in a bioluminescent system. J Cell Physiol. 1971;77:313–318. doi: 10.1002/jcp.1040770305. [DOI] [PubMed] [Google Scholar]
- Morise H., Shimomura O., Johnson F.H., Winant J. Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry. 1974;13:2656–2662. doi: 10.1021/bi00709a028. [DOI] [PubMed] [Google Scholar]
- Morse D., Pappenheimer A.M., Jr, Hastings J.W. Role of a luciferin-binding protein in the circadian bioluminescent reaction of Gonyaulax polyedra. J Biol Chem. 1989;264:11822–11826. [PubMed] [Google Scholar]
- Nicolas M.-T., Morse D., Bassot J.-M., Hastings J.W. Colocalization of luciferin binding protein and luciferase to the scintillons of Gonyaulax polyedra revealed by double immunolabeling after fast-freeze fixation. Protoplasma. 1991;160:159–166. [Google Scholar]
- O’Kane D.J., Karle V.A., Lee J. Purification of lumazine proteins from Photobacterium leiognathi and Photobacterium phosphoreum: bioluminescence properties. Biochemistry. 1985;24:1461–1467. doi: 10.1021/bi00327a026. [DOI] [PubMed] [Google Scholar]
- O’Kane D.J., Prasher D.C. Evolutionary origins of bacterial bioluminescence. Mol Microbiol. 1992;6:443–449. doi: 10.1111/j.1365-2958.1992.tb01488.x. [DOI] [PubMed] [Google Scholar]
- O’Kane D.J., Woodward B., Lee J., Prasher D.C. Borrowed proteins in bacterial bioluminescence. Proc Natl Acad Sci U S A. 1991;88:1100–1104. doi: 10.1073/pnas.88.4.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ollis D.L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S.J., Silman I., Schrag J., et al. The alpha/beta hydrolase fold. Protein Eng. 1992;5:197–211. doi: 10.1093/protein/5.3.197. [DOI] [PubMed] [Google Scholar]
- Ormö M., Cubitt A.B., Kallio K., Gross L.A., Tsien R.Y., Remington S.J. Crystal structure of the Aequorea victoria green fluorescent protein. Science. 1996;273:1392–1395. doi: 10.1126/science.273.5280.1392. [DOI] [PubMed] [Google Scholar]
- Petushkov V.N., Gibson B.G., Lee J. The yellow bioluminescence bacterium, Vibrio fischeri Y1, contains a bioluminescence active riboflavin protein in addition to the yellow fluorescence FMN protein. Biochem Biophys Res Commun. 1995;211:774–779. doi: 10.1006/bbrc.1995.1880. [DOI] [PubMed] [Google Scholar]
- Petushkov V.N., Gibson B.G., Lee J. Direct measurement of excitation transfer in the protein complex of bacterial luciferase hydroxyflavin and the associated yellow fluorescence proteins from Vibrio fischeri Y1. Biochemistry. 1996;35:8413–8418. doi: 10.1021/bi952691v. [DOI] [PubMed] [Google Scholar]
- Petushkov V.N., Ketelaars M., Gibson B.G., Lee J. Interaction of Photobacterium leiognathi and Vibrio fischeri Y1 luciferases with fluorescent (antenna) proteins: bioluminescence effects of the aliphatic additive. Biochemistry. 1996;35:12086–12093. doi: 10.1021/bi9608931. [DOI] [PubMed] [Google Scholar]
- Petushkov V.N., Lee J. Purification and characterization of flavoproteins and cytochromes from the yellow bioluminescence marine bacterium Vibrio fischeri strain Y1. Eur J Biochem. 1997;245:790–796. doi: 10.1111/j.1432-1033.1997.00790.x. [DOI] [PubMed] [Google Scholar]
- Prudêncio M., Ubbink M. Transient complexes of redox proteins: structural and dynamic details from NMR studies. J Mol Recognit. 2004;17:524–539. doi: 10.1002/jmr.686. [DOI] [PubMed] [Google Scholar]
- Reichmann D., Rahat O., Cohen M., Neuvirth H., Schreiber G. The molecular architecture of protein-protein binding sites. Curr Opin Struct Biol. 2007;17:67–76. doi: 10.1016/j.sbi.2007.01.004. [DOI] [PubMed] [Google Scholar]
- Remington S.J. Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol. 2006;16:714–721. doi: 10.1016/j.sbi.2006.10.001. [DOI] [PubMed] [Google Scholar]
- Sato Y., Shimizu S., Ohtaki A., Noguchi K., Miyatake H., Dohmae N., Sasaki S., Odaka M., Yohda M. Crystal structures of the lumazine protein from Photobacterium kishitanii in complexes with the authentic chromophore, 6,7-dimethyl-8-(1′-Dribityl) lumazine, and its analogues, riboflavin and flavin mononucleotide, at high resolution. J Bacteriol. 2010;192:127–133. doi: 10.1128/JB.01015-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneidman-Duhovny D., Inbar Y., Nussinov R., Wolfson H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 2005;33:W363–W367. doi: 10.1093/nar/gki481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schreiber G., Shaul Y., Gottschalk K.E. Electrostatic design of protein-protein association rates. Methods Mol Biol. 2006;340:235–249. doi: 10.1385/1-59745-116-9:235. [DOI] [PubMed] [Google Scholar]
- Schultz L.W., Liu L., Cegielski M., Hastings J.W. Crystal structure of a pH-regulated luciferase catalyzing the bioluminescent oxidation of an open tetrapyrrole. Proc Natl Acad Sci U S A. 2005;102:1378–1383. doi: 10.1073/pnas.0409335102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheinerman F.B., Norel R., Honig B. Electrostatic aspects of protein-protein interactions. Curr Opin Struct Biol. 2000;10:153–159. doi: 10.1016/s0959-440x(00)00065-8. [DOI] [PubMed] [Google Scholar]
- Shimomura O. Membrane permeability of coelenterazine analogues measured with fish eggs. Biochem J. 1997;326:297–298. doi: 10.1042/bj3260297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimomura O. Bioluminescence: chemical principles and methods. Singapore: World Scientific; 2006. p. 470. [Google Scholar]
- Shimomura O., Teranishi K. Light-emitters involved in the luminescence of coelenterazine. Luminescence. 2000;15:51–58. doi: 10.1002/(SICI)1522-7243(200001/02)15:1<51::AID-BIO555>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
- Sinclair J.F., Waddle J.J., Waddill E.F., Baldwin T.O. Purified native subunits of bacterial luciferase are active in the bioluminescence reaction but fail to assemble into the alpha beta structure. Biochemistry. 1993;32:5036–5044. doi: 10.1021/bi00070a010. [DOI] [PubMed] [Google Scholar]
- Sparks J.M., Baldwin T.O. Functional implications of the unstructured loop in the (beta/alpha)(8) barrel structure of the bacterial luciferase alpha subunit. Biochemistry. 2001;40:15436–15443. doi: 10.1021/bi0111855. [DOI] [PubMed] [Google Scholar]
- Stepanyuk G.A., Liu Z.-J., Vysotski E.S., Lee J., Rose J.P., Wang B.-C. Structure based mechanism of the Ca(2+)-induced release of coelenterazine from the Renilla binding protein. Proteins. 2009;74:583–593. doi: 10.1002/prot.22173. [DOI] [PubMed] [Google Scholar]
- Titushin M.S. Protein-protein interactions in the bioluminescence systems of coelenterates Renilla muelleri and Clytia gregaria. Krasnoyarsk 660036, Russia: Institute of Biophysics SB RAS; 2009. [Google Scholar]
- Titushin M.S., Feng Y., Stepanyuk G.A., Li Y., Markova S.V., Golz S., Wang B.-C., Lee J., Wang J., Vysotski E.S., et al. NMR-derived topology of a GFP-photoprotein energy transfer complex. J Biol Chem. 2010;285:40891–40900. doi: 10.1074/jbc.M110.133843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Titushin M.S., Markova S.V., Frank L.A., Malikova N.P., Stepanyuk G.A., Lee J., Vysotski E.S. Coelenterazine-binding protein of Renilla muelleri: cDNA cloning, overexpression, and characterization as a substrate of luciferase. Photochem Photobiol Sci. 2008;7:189–196. doi: 10.1039/b713109g. [DOI] [PubMed] [Google Scholar]
- Vaynberg J., Qin J. Weak protein-protein interactions as probed by NMR spectroscopy. Trends Biotechnol. 2006;24:22–27. doi: 10.1016/j.tibtech.2005.09.006. [DOI] [PubMed] [Google Scholar]
- Vervoort J., O’Kane D.J., Müller F., Bacher A., Strobl G., Lee J. 13C and 15N NMR studies on the interaction between 6,7-dimethyl-8-ribityllumazine and lumazine protein. Biochemistry. 1990;29:1823–1828. doi: 10.1021/bi00459a023. [DOI] [PubMed] [Google Scholar]
- Visser A.J., Lee J. Association between lumazine protein and bacterial luciferase: direct demonstration from the decay of the lumazine emission anisotropy. Biochemistry. 1982;21:2218–2226. doi: 10.1021/bi00538a034. [DOI] [PubMed] [Google Scholar]
- Visser A.J., Hoek A., Visser N.V., Lee Y., Ghisla S. Time-resolved fluorescence study of the dissociation of FMN from the yellow fluorescence protein from Vibrio fischeri. Photochem Photobiol. 1997;65:570–575. [Google Scholar]
- Vysotski E. S., Lee J. Bioluminescent mechanism of Ca2 +-regulated photoproteins from three-dimensional structures. In: Viviani V.R., Ohmiya Y., editors. Luciferases and Fluorescent Proteins: Principles and Advances in Biotechnology and Bioimaging. Kerala, India: Transworld Pesearch Network; 2007. pp. 19–41. [Google Scholar]
- Wachter R.M. Chromogenic cross-link formation in green fluorescent protein. Acc Chem Res. 2007;40:120–127. doi: 10.1021/ar040086r. [DOI] [PubMed] [Google Scholar]
- Wang X., Lee H.-W., Liu Y., Prestegard J.H. Structural NMR of protein oligomers using hybrid methods. J Struct Biol. 2011;173:515–529. doi: 10.1016/j.jsb.2010.11.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward W.W. Energy transfer processes in bioluminescence. In: Smith K.C., editor. Photochemical and Photobiological Reviews. New York: Plenum Press; 1979. pp. 1–57. [Google Scholar]
- Ward W.W., Cormier M.J. In vitro energy transfer in Renilla bioluminescence. J Phys Chem. 1976;80:2289–2291. [Google Scholar]
- Ward W.W., Cormier M.J. Energy transfer via proteinprotein interaction in Renilla bioluminescence. Photochem Photobiol. 1978;27:389–396. [Google Scholar]
- Ward W.W., Cormier M.J. An energy transfer protein in coelenterate bioluminescence. Characterization of the Renilla green-fluorescent protein. J Biol Chem. 1979;254:781–788. [PubMed] [Google Scholar]
- Wilson T., Hastings J.W. Bioluminescence. Annu Rev Cell Dev Biol. 1998;14:197–230. doi: 10.1146/annurev.cellbio.14.1.197. [DOI] [PubMed] [Google Scholar]
- Woo J., Howell M.H., von Arnim A.G. Structure-function studies on the active site of the coelenterazine-dependent luciferase from Renilla. Protein Sci. 2008;17:725–735. doi: 10.1110/ps.073355508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu P., Brand L. Resonance energy transfer: methods and applications. Anal Biochem. 1994;218:1–13. doi: 10.1006/abio.1994.1134. [DOI] [PubMed] [Google Scholar]
- Zuiderweg E.R.P. Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry. 2002;41:1–7. doi: 10.1021/bi011870b. [DOI] [PubMed] [Google Scholar]