Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2011 Oct 6;2(9):745–754. doi: 10.1007/s13238-011-1094-2

Structural view of the regulatory subunit of aspartate kinase from Mycobacterium tuberculosis

Qingzhu Yang 1, Kun Yu 2, Liming Yan 2, Yuanyuan Li 1, Cheng Chen 2, Xuemei Li 1,
PMCID: PMC4875266  PMID: 21976064

Abstract

The aspartate kinase (AK) from Mycobacterium tuberculosis (Mtb) catalyzes the biosynthesis of aspartate family amino acids, including lysine, threonine, isoleucine and methionine. We determined the crystal structures of the regulatory subunit of aspartate kinase from Mtb alone (referred to as MtbAKβ) and in complex with threonine (referred to as MtbAKβ-Thr) at resolutions of 2.6 Å and 2.0 Å, respectively. MtbAKβ is composed of two perpendicular non-equivalent ACT domains [aspartate kinase, chorismate mutase, and TyrA (prephenate dehydrogenase)] per monomer. Each ACT domain contains two α helices and four antiparallel β strands. The structure of MtbAKβ shares high similarity with the regulatory subunit of the aspartate kinase from Corynebacterium glutamicum (referred to as CgAKβ), suggesting similar regulatory mechanisms. Biochemical assays in our study showed that MtbAK is inhibited by threonine. Based on crystal structure analysis, we discuss the regulatory mechanism of MtbAK.

Keywords: Mycobacterium tuberculosis, aspartate kinase, crystal structure, β subunit

References

  1. Adams P.D., Grosse-Kunstleve R.W., Hung L.W., Ioerger T.R., McCoy A.J., Moriarty N.W., Read R.J., Sacchettini J.C., Sauter N.K., Terwilliger T.C. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr. 2002;58:1948–1954. doi: 10.1107/S0907444902016657. [DOI] [PubMed] [Google Scholar]
  2. Aravind L., Koonin E.V. Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. J Mol Biol. 1999;287:1023–1040. doi: 10.1006/jmbi.1999.2653. [DOI] [PubMed] [Google Scholar]
  3. Bailey S., the Collaborative Computational Project, Number 4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 1994;50:760–763. doi: 10.1107/S0907444993011898. [DOI] [PubMed] [Google Scholar]
  4. Black S., Wright N.G. beta-Aspartokinase and betaaspartyl phosphate. J Biol Chem. 1955;213:27–38. [PubMed] [Google Scholar]
  5. Chaitanya M., Babajan B., Anuradha C.M., Naveen M., Rajasekhar C., Madhusudana P., Kumar C.S. Exploring the molecular basis for selective binding of Mycobacterium tuberculosis Asp kinase toward its natural substrates and feedback inhibitors: a docking and molecular dynamics study. J Mol Model. 2010;16:1357–1367. doi: 10.1007/s00894-010-0653-4. [DOI] [PubMed] [Google Scholar]
  6. Chan E.D., Iseman M.D. Multidrug-resistant and extensively drug-resistant tuberculosis: a review. Curr Opin Infect Dis. 2008;21:587–595. doi: 10.1097/QCO.0b013e328319bce6. [DOI] [PubMed] [Google Scholar]
  7. Chipman D.M., Shaanan B. The ACT domain family. Curr Opin Struct Biol. 2001;11:694–700. doi: 10.1016/S0959-440X(01)00272-X. [DOI] [PubMed] [Google Scholar]
  8. Cirillo J.D., Weisbrod T.R., Pascopella L., Bloom B.R., Jacobs W.R. Jr. Isolation and characterization of the aspartokinase and aspartate semialdehyde dehydrogenase operon from mycobacteria. Mol Microbiol. 1994;11:629–639. doi: 10.1111/j.1365-2958.1994.tb00342.x. [DOI] [PubMed] [Google Scholar]
  9. Cole S.T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S.V., Eiglmeier K., Gas S., Barry C.E., et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:537–544. doi: 10.1038/31159. [DOI] [PubMed] [Google Scholar]
  10. Corbett E.L., Watt C.J., Walker N., Maher D., Williams B.G., Raviglione M.C., Dye C. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med. 2003;163:1009–1021. doi: 10.1001/archinte.163.9.1009. [DOI] [PubMed] [Google Scholar]
  11. DeLano W.L., Lam J.W. PyMOL: A communications tool for computational models. Abstracts of Papers of the American Chemical Society. 2005;230:U1371–U1372. [Google Scholar]
  12. Emsley P., Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. [DOI] [PubMed] [Google Scholar]
  13. Faehnle C.R., Liu X., Pavlovsky A., Viola R.E. The initial step in the archaeal aspartate biosynthetic pathway catalyzed by a monofunctional aspartokinase. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006;62:962–966. doi: 10.1107/S1744309106038279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fleischmann R.D., Alland D., Eisen J.A., Carpenter L., White O., Peterson J., DeBoy R., Dodson R., Gwinn M., Haft D., et al. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol. 2002;184:5479–5490. doi: 10.1128/JB.184.19.5479-5490.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gilker J.M., and Jucker M.T. (1997). Mycobacterium tuberculosis askalpha, ask-beta and asd genes. Submitted (FEB-1997) to the EMBL/GenBank/DDBJ databases.
  16. Grant G.A. The ACT domain: a small molecule binding domain and its role as a common regulatory element. J Biol Chem. 2006;281:33825–33829. doi: 10.1074/jbc.R600024200. [DOI] [PubMed] [Google Scholar]
  17. Hayward S., Lee R.A. Improvements in the analysis of domain motions in proteins from conformational change: DynDom version 1.50. J Mol Graph Model. 2002;21:181–183. doi: 10.1016/S1093-3263(02)00140-7. [DOI] [PubMed] [Google Scholar]
  18. Kotaka M., Ren J., Lockyer M., Hawkins A.R., Stammers D.K. Structures of R- and T-state Escherichia coli aspartokinase III. Mechanisms of the allosteric transition and inhibition by lysine. J Biol Chem. 2006;281:31544–31552. doi: 10.1074/jbc.M605886200. [DOI] [PubMed] [Google Scholar]
  19. Mas-Droux C., Curien G., Robert-Genthon M., Laurencin M., Ferrer J.L., Dumas R. A novel organization of ACT domains in allosteric enzymes revealed by the crystal structure of Arabidopsis aspartate kinase. Plant Cell. 2006;18:1681–1692. doi: 10.1105/tpc.105.040451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matthews B.W. Solvent content of protein crystals. J Mol Biol. 1968;33:491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  21. McCoy A.J., Grosse-Kunstleve R.W., Adams P.D., Winn M.D., Storoni L.C., Read R.J. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nishiyama M., Kukimoto M., Beppu T., Horinouchi S. An operon encoding aspartokinase and purine phosphoribosyl-transferase in Thermus flavus. Microbiology. 1995;141:1211–1219. doi: 10.1099/13500872-141-5-1211. [DOI] [PubMed] [Google Scholar]
  23. Otwinowski Z., Minor W. Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography. 1997;276:307–326. doi: 10.1016/S0076-6879(97)76066-X. [DOI] [PubMed] [Google Scholar]
  24. Rapaport E., Levina A., Metelev V., Zamecnik P.C. Antimycobacterial activities of antisense oligodeoxynucleotide phosphorothioates in drug-resistant strains. Proc Natl Acad Sci U S A. 1996;93:709–713. doi: 10.1073/pnas.93.2.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Robin A.Y., Cobessi D., Curien G., Robert-Genthon M., Ferrer J.L., Dumas R. A new mode of dimerization of allosteric enzymes with ACT domains revealed by the crystal structure of the aspartate kinase from Cyanobacteria. J Mol Biol. 2010;399:283–293. doi: 10.1016/j.jmb.2010.04.014. [DOI] [PubMed] [Google Scholar]
  26. Rognes S.E., Lea P.J., Miflin B.J. S-adenosylmethionine—a novel regulator of aspartate kinase. Nature. 1980;287:357–359. doi: 10.1038/287357a0. [DOI] [PubMed] [Google Scholar]
  27. Schuldt L., Suchowersky R., Veith K., Mueller-Dieckmann J., Weiss M.S. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the regulatory domain of aspartokinase (Rv3709c) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011;67:380–385. doi: 10.1107/S1744309111000030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tomioka H., Namba K. [Development of antituberculous drugs: current status and future prospects] Kekkaku. 2006;81:753–774. [PubMed] [Google Scholar]
  29. Yoshida A., Tomita T., Kono H., Fushinobu S., Kuzuyama T., Nishiyama M. Crystal structures of the regulatory subunit of Thr-sensitive aspartate kinase from Thermus thermophilus. FEBS J. 2009;276:3124–3136. doi: 10.1111/j.1742-4658.2009.07030.x. [DOI] [PubMed] [Google Scholar]
  30. Yoshida A., Tomita T., Kurihara T., Fushinobu S., Kuzuyama T., Nishiyama M. Structural Insight into concerted inhibition of alpha 2 beta 2-type aspartate kinase from Corynebacterium glutamicum. J Mol Biol. 2007;368:521–536. doi: 10.1016/j.jmb.2007.02.017. [DOI] [PubMed] [Google Scholar]
  31. Yoshida A., Tomita T., Kuzuyama T., Nishiyama M. Purification, crystallization and preliminary X-ray analysis of the regulatory subunit of aspartate kinase from Thermus thermophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007;63:96–98. doi: 10.1107/S1744309106055837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yoshida A., Tomita T., Kuzuyama T., Nishiyama M. Mechanism of concerted inhibition of alpha2beta2-type heterooligomeric aspartate kinase from Corynebacterium glutamicum. J Biol Chem. 2010;285:27477–27486. doi: 10.1074/jbc.M110.111153. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES