Abstract
Synthetic biology aims to design and build new biological systems with desirable properties, providing the foundation for the biosynthesis of secondary metabolites. The most prominent representation of synthetic biology has been used in microbial engineering by recombinant DNA technology. However, there are advantages of using a deleted host, and therefore an increasing number of biotechnology studies follow similar strategies to dissect cellular networks and construct genomereduced microbes. This review will give an overview of the strategies used for constructing and engineering reduced-genome factories by synthetic biology to improve production of secondary metabolites.
Keywords: synthetic biology, reduced-genome, secondary metabolite
Footnotes
These authors contributed equally to the work.
References
- Agapakis C.M., Silver P.A. Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks. Mol Biosyst. 2009;5:704–713. doi: 10.1039/b901484e. [DOI] [PubMed] [Google Scholar]
- Aho A.C., Donner K., Hydén C., Larsen L.O., Reuter T. Low retinal noise in animals with low body temperature allows high visual sensitivity. Nature. 1988;334:348–350. doi: 10.1038/334348a0. [DOI] [PubMed] [Google Scholar]
- Anné J., Van Mellaert L. Streptomyces lividans as host for heterologous protein production. FEMS Microbiol Lett. 1993;114:121–128. doi: 10.1111/j.1574-6968.1993.tb06561.x. [DOI] [PubMed] [Google Scholar]
- Bérdy J. Bioactive microbial metabolites. J Antibiot (Tokyo) 2005;58:1–26. doi: 10.1038/ja.2005.1. [DOI] [PubMed] [Google Scholar]
- Brawner M., Poste G., Rosenberg M., Westpheling J. Streptomyces: a host for heterologous gene expression. Curr Opin Biotechnol. 1991;2:674–681. doi: 10.1016/0958-1669(91)90033-2. [DOI] [PubMed] [Google Scholar]
- Cello J., Paul A.V., Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science. 2002;297:1016–1018. doi: 10.1126/science.1072266. [DOI] [PubMed] [Google Scholar]
- Chakiath C.S., Esposito D. Improved recombinational stability of lentiviral expression vectors using reduced-genome Escherichia coli. Biotechniques. 2007;43:466. doi: 10.2144/000112585. [DOI] [PubMed] [Google Scholar]
- Chen Y., Smanski M.J., Shen B. Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation. Appl Microbiol Biotechnol. 2010;86:19–25. doi: 10.1007/s00253-009-2428-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Debabov V.G. The threonine story. Adv Biochem Eng Biotechnol. 2003;79:113–136. doi: 10.1007/3-540-45989-8_4. [DOI] [PubMed] [Google Scholar]
- Fraser C.M., Gocayne J.D., White O., Adams M.D., Clayton R.A., Fleischmann R.D., Bult C.J., Kerlavage A.R., Sutton G., Kelley J.M., et al. The minimal gene complement of Mycoplasma genitalium. Science. 1995;270:397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
- Fujio T. Minimum genome factory: innovation in bioprocesses through genome science. Biotechnol Appl Biochem. 2007;46:145–146. doi: 10.1042/BA20060117. [DOI] [PubMed] [Google Scholar]
- Gao, H., Zhou, X., Gou, Z., Zhuo, Y., Fu, C., Liu, M., Song, F., Ashforth, E., and Zhang, L. (2010). Rational design for overproduction of desirable microbial metabolites by precision engineering. Antonie van Leeuwenhoek. In press. [DOI] [PubMed]
- Gil R., Silva F.J., Peretó J., Moya A. Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev. 2004;68:518–537. doi: 10.1128/MMBR.68.3.518-537.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harada K. Production of secondary metabolites by freshwater cyanobacteria. Chem Pharm Bull (Tokyo) 2004;52:889–899. doi: 10.1248/cpb.52.889. [DOI] [PubMed] [Google Scholar]
- Horsman G.P., Van Lanen S.G., Shen B. Iterative type I polyketide synthases for enediyne core biosynthesis. Methods Enzymol. 2009;459:97–112. doi: 10.1016/S0076-6879(09)04605-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang K.X., Xia L., Zhang Y., Ding X., Zahn J.A. Recent advances in the biochemistry of spinosyns. Appl Microbiol Biotechnol. 2009;82:13–23. doi: 10.1007/s00253-008-1784-8. [DOI] [PubMed] [Google Scholar]
- Jin Z.H., Xu B., Lin S.Z., Jin Q.C., Cen P.L. Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling. Appl Biochem Biotechnol. 2009;159:655–663. doi: 10.1007/s12010-008-8500-0. [DOI] [PubMed] [Google Scholar]
- Komatsu M., Uchiyama T., Omura S., Cane D.E., Ikeda H. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci U S A. 2010;107:2646–2651. doi: 10.1073/pnas.0914833107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koonin E.V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol. 2003;1:127–136. doi: 10.1038/nrmicro751. [DOI] [PubMed] [Google Scholar]
- Kwok R. Five hard truths for synthetic biology. Nature. 2010;463:288–290. doi: 10.1038/463288a. [DOI] [PubMed] [Google Scholar]
- Lee J.H., Sung B.H., Kim M.S., Blattner F.R., Yoon B.H., Kim J.H., Kim S.C. Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production. Microb Cell Fact. 2009;8:2. doi: 10.1186/1475-2859-8-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu W., Christenson S.D., Standage S., Shen B. Biosynthesis of the enediyne antitumor antibiotic C-1027. Science. 2002;297:1170–1173. doi: 10.1126/science.1072110. [DOI] [PubMed] [Google Scholar]
- Marner W.D., 2nd Practical application of synthetic biology principles. Biotechnol J. 2009;4:1406–1419. doi: 10.1002/biot.200900167. [DOI] [PubMed] [Google Scholar]
- Matsushima P., Baltz R. Transformation of Saccharopolysopora spinosa protoplasts with plasmid DNA modified in vitro to avoid host restriction. Microbiology. 1994;140:139–143. doi: 10.1099/13500872-140-1-139. [DOI] [Google Scholar]
- Matsushima P., Broughton M.C., Turner J.R., Baltz R.H. Conjugal transfer of cosmid DNA from Escherichia coli to Saccharopolyspora spinosa: effects of chromosomal insertions on macrolide A83543 production. Gene. 1994;146:39–45. doi: 10.1016/0378-1119(94)90831-1. [DOI] [PubMed] [Google Scholar]
- Mizoguchi H., Mori H., Fujio T. Escherichia coli minimum genome factory. Biotechnol Appl Biochem. 2007;46:157–167. doi: 10.1042/BA20060107. [DOI] [PubMed] [Google Scholar]
- Mizoguchi H., Sawano Y., Kato J., Mori H. Superpositioning of deletions promotes growth of Escherichia coli with a reduced genome. DNA Res. 2008;15:277–284. doi: 10.1093/dnares/dsn019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morimoto T., Kadoya R., Endo K., Tohata M., Sawada K., Liu S., Ozawa T., Kodama T., Kakeshita H., Kageyama Y., et al. Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res. 2008;15:73–81. doi: 10.1093/dnares/dsn002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murakami K., Tao E., Ito Y., Sugiyama M., Kaneko Y., Harashima S., Sumiya T., Nakamura A., Nishizawa M. Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism. Appl Microbiol Biotechnol. 2007;75:589–597. doi: 10.1007/s00253-007-0859-2. [DOI] [PubMed] [Google Scholar]
- Ohnishi Y., Ishikawa J., Hara H., Suzuki H., Ikenoya M., Ikeda H., Yamashita A., Hattori M., Horinouchi S. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol. 2008;190:4050–4060. doi: 10.1128/JB.00204-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pósfai G., Plunkett G., 3rd, Fehér T., Frisch D., Keil G.M., Umenhoffer K., Kolisnychenko V., Stahl B., Sharma S.S., de Arruda M., et al. Emergent properties of reduced-genome Escherichia coli. Science. 2006;312:1044–1046. doi: 10.1126/science.1126439. [DOI] [PubMed] [Google Scholar]
- Reichenbach H. Myxobacteria, producers of novel bioactive substances. J Ind Microbiol Biotechnol. 2001;27:149–156. doi: 10.1038/sj.jim.7000025. [DOI] [PubMed] [Google Scholar]
- Rokem J.S., Lantz A.E., Nielsen J. Systems biology of antibiotic production by microorganisms. Nat Prod Rep. 2007;24:1262–1287. doi: 10.1039/b617765b. [DOI] [PubMed] [Google Scholar]
- Sharma S.S., Blattner F.R., Harcum S.W. Recombinant protein production in an Escherichia coli reduced genome strain. Metab Eng. 2007;9:133–141. doi: 10.1016/j.ymben.2006.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tian J., Gong H., Sheng N., Zhou X., Gulari E., Gao X., Church G. Accurate multiplex gene synthesis from programmable DNA microchips. Nature. 2004;432:1050–1054. doi: 10.1038/nature03151. [DOI] [PubMed] [Google Scholar]
- Wang L., Hu Y., Zhang Y., Wang S., Cui Z., Bao Y., Jiang W., Hong B. Role of sgcR3 in positive regulation of enediyne antibiotic C-1027 production of Streptomyces globisporus C-1027. BMC Microbiol. 2009;9:14. doi: 10.1186/1471-2180-9-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhuo, Y., Zhang, W., Chen, D., Gao, H., Tao, J., Liu, M., Gou, Z., Zhou, X., BC, Y., Zhang, Q., et al. (2010). Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis. Proc Natl Acad Sci U S A. In press. [DOI] [PMC free article] [PubMed]
