Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2010 Jul 29;1(7):664–674. doi: 10.1007/s13238-010-0088-9

Specific interaction of hepatitis C virus glycoproteins with mannan binding lectin inhibits virus entry

Kristelle S Brown 1, Michael J Keogh 1, Ania M Owsianka 2, Richard Adair 2, Arvind H Patel 2, James N Arnold 3, Jonathan K Ball 1, Robert B Sim 3, Alexander W Tarr 1,, Timothy P Hickling 1
PMCID: PMC4875281  PMID: 21203938

Abstract

Mannan-binding lectin (MBL) is a soluble innate immune protein that binds to glycosylated targets. MBL acts as an opsonin and activates complement, contributing to the destruction and clearance of infecting microorganisms. Hepatitis C virus (HCV) encodes two envelope glycoproteins E1 and E2, expressed as non-covalent E1/E2 heterodimers in the viral envelope. E1 and E2 are potential ligands for MBL. Here we describe an analysis of the interaction between HCV and MBL using recombinant soluble E2 ectodomain fragment, the full-length E1/E2 heterodimer, expressed in vitro, and assess the effect of this interaction on virus entry. A binding assay using antibody capture of full length E1/E2 heterodimers was used to demonstrate calcium dependent, saturating binding of MBL to HCV glycoproteins. Competition with various saccharides further confirmed that the interaction was via the lectin domain of MBL. MBL binds to E1/E2 representing a broad range of virus genotypes. MBL was shown to neutralize the entry into Huh-7 cells of HCV pseudoparticles (HCVpp) bearing E1/E2 from a wide range of genotypes. HCVpp were neutralized to varying degrees. MBL was also shown to neutralize an authentic cell culture infectious virus, strain JFH-1 (HCVcc). Furthermore, binding of MBL to E1/E2 was able to activate the complement system via MBL-associated serine protease 2. In conclusion, MBL interacts directly with HCV glycoproteins, which are present on the surface of the virion, resulting in neutralization of HCV particles.

Keywords: hepatitis C virus, neutralization, mannose binding lectin, chronic viral infection

References

  1. Aasa-Chapman M.M., Holuigue S., Aubin K., Wong M., Jones N. A., Cornforth D., Pellegrino P., Newton P., Williams I., Borrow P., et al. Detection of antibody-dependent complementmediated inactivation of both autologous and heterologous virus in primary human immunodeficiency virus type 1 infection. J Virol. 2005;79:2823–2830. doi: 10.1128/JVI.79.5.2823-2830.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alves Pedroso M.L., Boldt A.B., Pereira-Ferrari L., Steffensen R., Strauss E., Jensenius J.C., Ioshii S.O., Messias-Reason I. Mannan-binding lectin MBL2 gene polymorphism in chronic hepatitis C: association with the severity of liver fibrosis and response to interferon therapy. Clin Exp Immunol. 2008;152:258–264. doi: 10.1111/j.1365-2249.2008.03614.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anders E.M., Hartley C.A., Jackson D.C. Bovine and mouse serum beta inhibitors of influenza A viruses are mannosebinding lectins. Proc Natl Acad Sci U S A. 1990;87:4485–4489. doi: 10.1073/pnas.87.12.4485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anon. (1999). Global surveillance and control of hepatitis C. Report of a WHO Consultation organized in collaboration with the Viral Hepatitis Prevention Board, Antwerp, Belgium. J Viral Hepat 6, 35–47. [PubMed]
  5. Arnold J.N., Radcliffe C.M., Wormald M.R., Royle L., Harvey D.J., Crispin M., Dwek R.A., Sim R.B., Rudd P.M. The glycosylation of human serum IgD and IgE and the accessibility of identified oligomannose structures for interaction with mannanbinding lectin. J Immunol. 2004;173:6831–6840. doi: 10.4049/jimmunol.173.11.6831. [DOI] [PubMed] [Google Scholar]
  6. Bartosch B., Dubuisson J., Cosset F.L. Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. J Exp Med. 2003;197:633–642. doi: 10.1084/jem.20021756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bouwman L.H., Roos A., Terpstra O.T., de Knijff P., van Hoek B., Verspaget H.W., Berger S.P., Daha M.R., Frölich M., van der Slik A.R., et al. Mannose binding lectin gene polymorphisms confer a major risk for severe infections after liver transplantation. Gastroenterology. 2005;129:408–414. doi: 10.1016/j.gastro.2005.06.049. [DOI] [PubMed] [Google Scholar]
  8. Brown K.S., Keogh M.J., Tagiuri N., Grainge M.J., Presanis J.S., Ryder S.D., Irving W.L., Ball J.K., Sim R.B., Hickling T.P. Severe fibrosis in hepatitis C virus-infected patients is associated with increased activity of the mannan-binding lectin (MBL)/MBL-associated serine protease 1 (MASP-1) complex. Clin Exp Immunol. 2007;147:90–98. doi: 10.1111/j.1365-2249.2006.03264.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brown K.S., Ryder S.D., Irving W.L., Sim R.B., Hickling T.P. Mannan binding lectin and viral hepatitis. Immunol Lett. 2007;108:34–44. doi: 10.1016/j.imlet.2006.10.006. [DOI] [PubMed] [Google Scholar]
  10. Chong W.P., To Y.F., Ip W.K., Yuen M.F., Poon T.P., Wong W.H., Lai C.L., Lau Y.L. Mannose-binding lectin in chronic hepatitis B virus infection. Hepatology. 2005;42:1037–1045. doi: 10.1002/hep.20891. [DOI] [PubMed] [Google Scholar]
  11. Clayton R.F., Owsianka A., Aitken J., Graham S., Bhella D., Patel A.H. Analysis of antigenicity and topology of E2 glycoprotein present on recombinant hepatitis C virus-like particles. J Virol. 2002;76:7672–7682. doi: 10.1128/JVI.76.15.7672-7682.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dumestre-Perard C., Ponard D., Drouet C., Leroy V., Zarski J.P., Dutertre N., Colomb M.G. Complement C4 monitoring in the follow-up of chronic hepatitis C treatment. Clin Exp Immunol. 2002;127:131–136. doi: 10.1046/j.1365-2249.2002.01729.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Endo M., Ohsawa I., Ohi H., Fujita T., Matsushita M., Fujita T. Mannose-binding lectin contributes to glomerulonephritis induced by hepatitis C virus infection. Nephron. 2001;87:374–375. doi: 10.1159/000045947. [DOI] [PubMed] [Google Scholar]
  14. Farci P., Alter H.J., Wong D.C., Miller R.H., Govindarajan S., Engle R., Shapiro M., Purcell R.H. Prevention of hepatitis C virus infection in chimpanzees after antibody-mediated in vitro neutralization. Proc Natl Acad Sci U S A. 1994;91:7792–7796. doi: 10.1073/pnas.91.16.7792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gerlach J.T., Diepolder H.M., Jung M.C., Gruener N.H., Schraut W. W., Zachoval R., Hoffmann R., Schirren C.A., Santantonio T., Pape G.R. Recurrence of hepatitis C virus after loss of virus-specific CD4(+) T-cell response in acute hepatitis C. Gastroenterology. 1999;117:933–941. doi: 10.1016/S0016-5085(99)70353-7. [DOI] [PubMed] [Google Scholar]
  16. Goffard A., Dubuisson J. Glycosylation of hepatitis C virus envelope proteins. Biochimie. 2003;85:295–301. doi: 10.1016/S0300-9084(03)00004-X. [DOI] [PubMed] [Google Scholar]
  17. Golden-Mason L., Madrigal-Estebas L., McGrath E., Conroy M.J., Ryan E.J., Hegarty J.E., O’Farrelly C., Doherty D.G. Altered natural killer cell subset distributions in resolved and persistent hepatitis C virus infection following single source exposure. Gut. 2008;57:1121–1128. doi: 10.1136/gut.2007.130963. [DOI] [PubMed] [Google Scholar]
  18. Hart M.L., Saifuddin M., Spear G.T. Glycosylation inhibitors and neuraminidase enhance human immunodeficiency virus type 1 binding and neutralization by mannose-binding lectin. J Gen Virol. 2003;84:353–360. doi: 10.1099/vir.0.18734-0. [DOI] [PubMed] [Google Scholar]
  19. Helle F., Goffard A., Morel V., Duverlie G., McKeating J., Keck Z. Y., Foung S., Penin F., Dubuisson J., Voisset C. The neutralizing activity of anti-hepatitis C virus antibodies is modulated by specific glycans on the E2 envelope protein. J Virol. 2007;81:8101–8111. doi: 10.1128/JVI.00127-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Helle F., Wychowski C., Vu-Dac N., Gustafson K.R., Voisset C., Dubuisson J. Cyanovirin-N inhibits hepatitis C virus entry by binding to envelope protein glycans. J Biol Chem. 2006;281:25177–25183. doi: 10.1074/jbc.M602431200. [DOI] [PubMed] [Google Scholar]
  21. Iacob R.E., Perdivara I., Przybylski M., Tomer K.B. Mass spectrometric characterization of glycosylation of hepatitis C virus E2 envelope glycoprotein reveals extended microheterogeneity of N-glycans. J Am Soc Mass Spectrom. 2008;19:428–444. doi: 10.1016/j.jasms.2007.11.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ishii K., Rosa D., Watanabe Y., Katayama T., Harada H., Wyatt C., Kiyosawa K., Aizaki H., Matsuura Y., Houghton M., et al. High titers of antibodies inhibiting the binding of envelope to human cells correlate with natural resolution of chronic hepatitis C. Hepatology. 1998;28:1117–1120. doi: 10.1002/hep.510280429. [DOI] [PubMed] [Google Scholar]
  23. Ji X., Gewurz H., Spear G.T. Mannose binding lectin (MBL) and HIV. Mol Immunol. 2005;42:145–152. doi: 10.1016/j.molimm.2004.06.015. [DOI] [PubMed] [Google Scholar]
  24. Ji X., Olinger G.G., Aris S., Chen Y., Gewurz H., Spear G.T. Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization. J Gen Virol. 2005;86:2535–2542. doi: 10.1099/vir.0.81199-0. [DOI] [PubMed] [Google Scholar]
  25. Kilpatrick D.C., Delahooke T.E., Koch C., Turner M.L., Hayes P.C. Mannan-binding lectin and hepatitis C infection. Clin Exp Immunol. 2003;132:92–95. doi: 10.1046/j.1365-2249.2003.02122.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kim W.R. The burden of hepatitis C in the United States. Hepatology. 2002;36:S30–S34. doi: 10.1002/hep.1840360705. [DOI] [PubMed] [Google Scholar]
  27. Koutsounaki E., Goulielmos G.N., Koulentaki M., Choulaki C., Kouroumalis E., Galanakis E. Mannose-binding lectin MBL2 gene polymorphisms and outcome of hepatitis C virusinfected patients. J Clin Immunol. 2008;28:495–500. doi: 10.1007/s10875-008-9201-8. [DOI] [PubMed] [Google Scholar]
  28. Krarup A., Wallis R., Presanis J.S., Gál P., Sim R.B., Sommer P. Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS ONE. 2007;2:e623. doi: 10.1371/journal.pone.0000623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lavillette D., Tarr A.W., Voisset C., Donot P., Bartosch B., Bain C., Patel A.H., Dubuisson J., Ball J.K., Cosset F.L. Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatology. 2005;41:265–274. doi: 10.1002/hep.20542. [DOI] [PubMed] [Google Scholar]
  30. Liu J., Ali M.A., Shi Y., Zhao Y., Luo F., Yu J., Xiang T., Tang J., Li D., Hu Q., et al. Specifically binding of L-ficolin to Nglycans of HCV envelope glycoproteins E1 and E2 leads to complement activation. Cell Mol Immunol. 2009;6:235–244. doi: 10.1038/cmi.2009.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Malhotra R., Haurum J.S., Thiel S., Sim R.B. Binding of human collectins (SP-A and MBP) to influenza virus. Biochem J. 1994;304:455–461. doi: 10.1042/bj3040455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Matsushita M., Hijikata M., Matsushita M., Ohta Y., Mishiro S. Association of mannose-binding lectin gene haplotype LXPA and LYPB with interferon-resistant hepatitis C virus infection in Japanese patients. J Hepatol. 1998;29:695–700. doi: 10.1016/S0168-8278(98)80248-1. [DOI] [PubMed] [Google Scholar]
  33. Matsushita M., Hijikata M., Ohta Y., Iwata K., Matsumoto M., Nakao K., Kanai K., Yoshida N., Baba K., Mishiro S. Hepatitis C virus infection and mutations of mannosebinding lectin gene MBL. Arch Virol. 1998;143:645–651. doi: 10.1007/s007050050320. [DOI] [PubMed] [Google Scholar]
  34. Mayilyan K.R., Presanis J.S., Arnold J.N., Hajela K., Sim R.B. Heterogeneity of MBL-MASP complexes. Mol Immunol. 2006;43:1286–1292. doi: 10.1016/j.molimm.2005.07.011. [DOI] [PubMed] [Google Scholar]
  35. Meyer K., Basu A., Przysiecki C.T., Lagging L.M., Di Bisceglie A. M., Conley A.J., Ray R. Complement-mediated enhancement of antibody function for neutralization of pseudotype virus containing hepatitis C virus E2 chimeric glycoprotein. J Virol. 2002;76:2150–2158. doi: 10.1128/jvi.76.5.2150-2158.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nakabayashi H., Taketa K., Miyano K., Yamane T., Sato J. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 1982;42:3858–3863. [PubMed] [Google Scholar]
  37. Owsianka A., Clayton R.F., Loomis-Price L.D., McKeating J.A., Patel A.H. Functional analysis of hepatitis C virus E2 glycoproteins and virus-like particles reveals structural dissimilarities between different forms of E2. J Gen Virol. 2001;82:1877–1883. doi: 10.1099/0022-1317-82-8-1877. [DOI] [PubMed] [Google Scholar]
  38. Owsianka A., Tarr A.W., Juttla V.S., Lavillette D., Bartosch B., Cosset F.L., Ball J.K., Patel A.H. Monoclonal antibody AP33 defines a broadly neutralizing epitope on the hepatitis C virus E2 envelope glycoprotein. J Virol. 2005;79:11095–11104. doi: 10.1128/JVI.79.17.11095-11104.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Owsianka A.M., Tarr A.W., Keck Z.Y., Li T.K., Witteveldt J., Adair R., Foung S.K., Ball J.K., Patel A.H. Broadly neutralizing human monoclonal antibodies to the hepatitis C virus E2 glycoprotein. J Gen Virol. 2008;89:653–659. doi: 10.1099/vir.0.83386-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pawlotsky J.M. Therapy of hepatitis C: from empiricism to eradication. Hepatology. 2006;43:S207–S220. doi: 10.1002/hep.21064. [DOI] [PubMed] [Google Scholar]
  41. Pestka J.M., Zeisel M.B., Bläser E., Schürmann P., Bartosch B., Cosset F.L., Patel A.H., Meisel H., Baumert J., Viazov S., et al. Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C. Proc Natl Acad Sci U S A. 2007;104:6025–6030. doi: 10.1073/pnas.0607026104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Pulendran B., Ahmed R. Translating innate immunity into immunological memory: implications for vaccine development. Cell. 2006;124:849–863. doi: 10.1016/j.cell.2006.02.019. [DOI] [PubMed] [Google Scholar]
  43. Reading P.C., Morey L.S., Crouch E.C., Anders E.M. Collectin-mediated antiviral host defense of the lung: evidence from influenza virus infection of mice. J Virol. 1997;71:8204–8212. doi: 10.1128/jvi.71.11.8204-8212.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sanders C.J., Yu Y., Moore D.A., 3rd, Williams I.R., Gewirtz A. T. Humoral immune response to flagellin requires T cells and activation of innate immunity. J Immunol. 2006;177:2810–2818. doi: 10.4049/jimmunol.177.5.2810. [DOI] [PubMed] [Google Scholar]
  45. Sasaki K., Tsutsumi A., Wakamiya N., Ohtani K., Suzuki Y., Watanabe Y., Nakayama N., Koike T., Sasaki K., Tsutsumi A., Wakamiya N. Mannose-binding lectin polymorphisms in patients with hepatitis C virus infection. Scand J Gastroenterol. 2000;35:960–965. doi: 10.1080/003655200750023039. [DOI] [PubMed] [Google Scholar]
  46. Simmonds P., Bukh J., Combet C., Deléage G., Enomoto N., Feinstone S., Halfon P., Inchauspé G., Kuiken C., Maertens G., et al. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology. 2005;42:962–973. doi: 10.1002/hep.20819. [DOI] [PubMed] [Google Scholar]
  47. Steinmann D., Barth H., Gissler B., Schürmann P., Adah M.I., Gerlach J.T., Pape G.R., Depla E., Jacobs D., Maertens G., et al. Inhibition of hepatitis C virus-like particle binding to target cells by antiviral antibodies in acute and chronic hepatitis C. J Virol. 2004;78:9030–9040. doi: 10.1128/JVI.78.17.9030-9040.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Takehara T., Hayashi N. Natural killer cells in hepatitis C virus infection: from innate immunity to adaptive immunity. Clin Gastroenterol Hepatol. 2005;3:S78–S81. doi: 10.1016/S1542-3565(05)00702-0. [DOI] [PubMed] [Google Scholar]
  49. Tan S.M., Chung M.C., Kon O.L., Thiel S., Lee S.H., Lu J. Improvements on the purification of mannan-binding lectin and demonstration of its Ca(2 +)-independent association with a C1s-like serine protease. Biochem J. 1996;319:329–332. doi: 10.1042/bj3190329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tarr A.W., Owsianka A.M., Timms J.M., McClure C.P., Brown R.J., Hickling T.P., Pietschmann T., Bartenschlager R., Patel A.H., Ball J.K. Characterization of the hepatitis C virus E2 epitope defined by the broadly neutralizing monoclonal antibody AP33. Hepatology. 2006;43:592–601. doi: 10.1002/hep.21088. [DOI] [PubMed] [Google Scholar]
  51. Thiel S., Holmskov U., Hviid L., Laursen S.B., Jensenius J.C. The concentration of the C-type lectin, mannan-binding protein, in human plasma increases during an acute phase response. Clin Exp Immunol. 1992;90:31–35. doi: 10.1111/j.1365-2249.1992.tb05827.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Thiel S., Vorup-Jensen T., Stover C.M., Schwaeble W., Laursen S. B., Poulsen K., Willis A.C., Eggleton P., Hansen S., Holmskov U., et al. A second serine protease associated with mannan-binding lectin that activates complement. Nature. 1997;386:506–510. doi: 10.1038/386506a0. [DOI] [PubMed] [Google Scholar]
  53. Thimme R., Oldach D., Chang K.M., Steiger C., Ray S.C., Chisari F.V. Determinants of viral clearance and persistence during acute hepatitis C virus infection. J Exp Med. 2001;194:1395–1406. doi: 10.1084/jem.194.10.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Vallinoto A.C., da Silva R.F., Hermes R.B., Amaral I.S., Miranda E. C., Barbosa M.S., Moia L.J., Conde S.R., Soares M.C., Lemos J.A., et al. Mannose-binding lectin gene polymorphisms are not associated with susceptibility to hepatitis C virus infection in the Brazilian Amazon region. Hum Immunol. 2009;70:754–757. doi: 10.1016/j.humimm.2009.06.014. [DOI] [PubMed] [Google Scholar]
  55. Wakita T., Pietschmann T., Kato T., Date T., Miyamoto M., Zhao Z., Murthy K., Habermann A., Kräusslich H.G., Mizokami M., et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med. 2005;11:791–796. doi: 10.1038/nm1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Weis W.I., Drickamer K., Hendrickson W.A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature. 1992;360:127–134. doi: 10.1038/360127a0. [DOI] [PubMed] [Google Scholar]
  57. Yamada E., Montoya M., Schuettler C.G., Hickling T.P., Tarr A.W., Vitelli A., Dubuisson J., Patel A.H., Ball J.K., Borrow P. Analysis of the binding of hepatitis C virus genotype 1a and 1b E2 glycoproteins to peripheral blood mononuclear cell subsets. J Gen Virol. 2005;86:2507–2512. doi: 10.1099/vir.0.81169-0. [DOI] [PubMed] [Google Scholar]
  58. Yanagi M., Purcell R.H., Emerson S.U., Bukh J. Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. Proc Natl Acad Sci U S A. 1997;94:8738–8743. doi: 10.1073/pnas.94.16.8738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Ying H., Ji X., Hart M.L., Gupta K., Saifuddin M., Zariffard M.R., Spear G.T. Interaction of mannose-binding lectin with HIV type 1 is sufficient for virus opsonization but not neutralization. AIDS Res Hum Retroviruses. 2004;20:327–335. doi: 10.1089/088922204322996563. [DOI] [PubMed] [Google Scholar]
  60. Zhang M., Rosenberg P.S., Brown D.L., Preiss L., Konkle B.A., Eyster M.E., Goedert J.J., the Second Multicenter Hemophilia Cohort Study Correlates of spontaneous clearance of hepatitis C virus among people with hemophilia. Blood. 2006;107:892–897. doi: 10.1182/blood-2005-07-2781. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES