Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2011 Feb 20;2(1):64–73. doi: 10.1007/s13238-011-1009-2

hNUDT16: a universal decapping enzyme for small nucleolar RNA and cytoplasmic mRNA

Guangwen Lu 1,2, Jie Zhang 1, Yan Li 1,2, Zhixin Li 1,2, Na Zhang 1,2, Xiang Xu 3, Tingting Wang 1, Zhenhong Guan 1, George F Gao 1,2,4, Jinghua Yan 1,
PMCID: PMC4875290  PMID: 21337011

Abstract

Human NUDT16 (hNUDT16) is a decapping enzyme initially identified as the human homolog to the Xenopus laevis X29. As a metalloenzyme, hNUDT16 relies on divalent cations for its cap-hydrolysis activity to remove m7GDP and m227GDP from RNAs. Metal also determines substrate specificity of the enzyme. So far, only U8 small nucleolar RNA (snoRNA) has been identified as the substrate of hNUDT16 in the presence of Mg2+. Here we demonstrate that besides U8, hNUDT16 can also actively cleave the m7GDP cap from mRNAs in the presence of Mg2+ or Mn2+. We further show that hNUDT16 does not preferentially recognize U8 or mRNA substrates by our cross-inhibition and quantitative decapping assays. In addition, our mutagenesis analysis identifies several key residues involved in hydrolysis and confirms the key role of the REXXEE motif in catalysis. Finally an investigation into the subcellular localization of hNUDT16 revealed its abundance in both cytoplasm and nucleus. These findings extend the substrate spectrum of hNUDT16 beyond snoRNAs to also include mRNA, demonstrating the pleiotropic decapping activity of hNUDT16.

Keywords: hNUDT16, mRNA, U8 small nucleolar RNA, decapping activity, substrate specificity, subcellular localization

Footnotes

These authors contributed equally to this work.

References

  1. Abolhassani N., Iyama T., Tsuchimoto D., Sakumi K., Ohno M., Behmanesh M., Nakabeppu Y. NUDT16 and ITPA play a dual protective role in maintaining chromosome stability and cell growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals. Nucleic Acids Res. 2010;38:2891–2903. doi: 10.1093/nar/gkp1250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson J.S., Parker R.P. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 1998;17:1497–1506. doi: 10.1093/emboj/17.5.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bessman M.J., Frick D.N., O’Handley S.F. The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem. 1996;271:25059–25062. doi: 10.1074/jbc.271.41.25059. [DOI] [PubMed] [Google Scholar]
  4. Bhatnagar S.K., Bullions L.C., Bessman M.J. Characterization of the mutT nucleoside triphosphatase of Escherichia coli. J Biol Chem. 1991;266:9050–9054. [PubMed] [Google Scholar]
  5. Chen C.Y., Gherzi R., Ong S.E., Chan E.L., Raijmakers R., Pruijn G.J., Stoecklin G., Moroni C., Mann M., Karin M. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell. 2001;107:451–464. doi: 10.1016/S0092-8674(01)00578-5. [DOI] [PubMed] [Google Scholar]
  6. Coller J., Parker R. Eukaryotic mRNA decapping. Annu Rev Biochem. 2004;73:861–890. doi: 10.1146/annurev.biochem.73.011303.074032. [DOI] [PubMed] [Google Scholar]
  7. Cougot N., Babajko S., Séraphin B. Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol. 2004;165:31–40. doi: 10.1083/jcb.200309008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cougot N., van Dijk E., Babajko S., Séraphin B. Captabolism. Trends Biochem Sci. 2004;29:436–444. doi: 10.1016/j.tibs.2004.06.008. [DOI] [PubMed] [Google Scholar]
  9. Das B., Butler J.S., Sherman F. Degradation of normal mRNA in the nucleus of Saccharomyces cerevisiae. Mol Cell Biol. 2003;23:5502–5515. doi: 10.1128/MCB.23.16.5502-5515.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Das B., Das S., Sherman F. Mutant LYS2 mRNAs retained and degraded in the nucleus of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2006;103:10871–10876. doi: 10.1073/pnas.0604562103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Das B., Guo Z., Russo P., Chartrand P., Sherman F. The role of nuclear cap binding protein Cbc1p of yeast in mRNA termination and degradation. Mol Cell Biol. 2000;20:2827–2838. doi: 10.1128/MCB.20.8.2827-2838.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Decker C.J., Parker R. Mechanisms of mRNA degradation in eukaryotes. Trends Biochem Sci. 1994;19:336–340. doi: 10.1016/0968-0004(94)90073-6. [DOI] [PubMed] [Google Scholar]
  13. Dostie J., Lejbkowicz F., Sonenberg N. Nuclear eukaryotic initiation factor 4E (eIF4E) colocalizes with splicing factors in speckles. J Cell Biol. 2000;148:239–247. doi: 10.1083/jcb.148.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dunckley T., Parker R. The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J. 1999;18:5411–5422. doi: 10.1093/emboj/18.19.5411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dunckley T., Parker R. Yeast mRNA decapping enzyme. Methods Enzymol. 2001;342:226–233. doi: 10.1016/S0076-6879(01)42547-X. [DOI] [PubMed] [Google Scholar]
  16. Fenger-Grøn M., Fillman C., Norrild B., Lykke-Andersen J. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell. 2005;20:905–915. doi: 10.1016/j.molcel.2005.10.031. [DOI] [PubMed] [Google Scholar]
  17. Fisher D.I., Cartwright J.L., Harashima H., Kamiya H., McLennan A.G. Characterization of a nudix hydrolase from Deinococcus radiodurans with a marked specificity for (deoxy)ribonucleoside 5′-diphosphates. BMC Biochem. 2004;5:7. doi: 10.1186/1471-2091-5-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Garneau N.L., Wilusz J., Wilusz C.J. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol. 2007;8:113–126. doi: 10.1038/nrm2104. [DOI] [PubMed] [Google Scholar]
  19. Ghosh T., Peterson B., Tomasevic N., Peculis B.A. Xenopus U8 snoRNA binding protein is a conserved nuclear decapping enzyme. Mol Cell. 2004;13:817–828. doi: 10.1016/S1097-2765(04)00127-3. [DOI] [PubMed] [Google Scholar]
  20. Gu M., Fabrega C., Liu S.W., Liu H., Kiledjian M., Lima C.D. Insights into the structure, mechanism, and regulation of scavenger mRNA decapping activity. Mol Cell. 2004;14:67–80. doi: 10.1016/S1097-2765(04)00180-7. [DOI] [PubMed] [Google Scholar]
  21. Hori M., Fujikawa K., Kasai H., Harashima H., Kamiya H. Dual hydrolysis of diphosphate and triphosphate derivatives of oxidized deoxyadenosine by Orf17 (NtpA), a MutT-type enzyme. DNA Repair (Amst) 2005;4:33–39. doi: 10.1016/j.dnarep.2004.07.010. [DOI] [PubMed] [Google Scholar]
  22. Ito R., Hayakawa H., Sekiguchi M., Ishibashi T. Multiple enzyme activities of Escherichia coli MutT protein for sanitization of DNA and RNA precursor pools. Biochemistry. 2005;44:6670–6674. doi: 10.1021/bi047550k. [DOI] [PubMed] [Google Scholar]
  23. Iyama T., Abolhassani N., Tsuchimoto D., Nonaka M., Nakabeppu Y. NUDT16 is a (deoxy)inosine diphosphatase, and its deficiency induces accumulation of single-strand breaks in nuclear DNA and growth arrest. Nucleic Acids Res. 2010;38:4834–4843. doi: 10.1093/nar/gkq249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kuai L., Das B., Sherman F. A nuclear degradation pathway controls the abundance of normal mRNAs in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2005;102:13962–13967. doi: 10.1073/pnas.0506518102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lykke-Andersen J. Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol. 2002;22:8114–8121. doi: 10.1128/MCB.22.23.8114-8121.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Meyer S., Temme C., Wahle E. Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol. 2004;39:197–216. doi: 10.1080/10409230490513991. [DOI] [PubMed] [Google Scholar]
  27. Mi S., Li Y., Yan J., Gao G.F. Na(+)/K (+)-ATPase β1 subunit interacts with M2 proteins of influenza A and B viruses and affects the virus replication. Sci China Life Sci. 2010;53:1098–1105. doi: 10.1007/s11427-010-4048-7. [DOI] [PubMed] [Google Scholar]
  28. Mildvan A.S., Xia Z., Azurmendi H.F., Saraswat V., Legler P.M., Massiah M.A., Gabelli S.B., Bianchet M.A., Kang L.W., Amzel L.M. Structures and mechanisms of Nudix hydrolases. Arch Biochem Biophys. 2005;433:129–143. doi: 10.1016/j.abb.2004.08.017. [DOI] [PubMed] [Google Scholar]
  29. Mukherjee D., Gao M., O’Connor J.P., Raijmakers R., Pruijn G., Lutz C.S., Wilusz J. The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J. 2002;21:165–174. doi: 10.1093/emboj/21.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Parker R., Song H. The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol. 2004;11:121–127. doi: 10.1038/nsmb724. [DOI] [PubMed] [Google Scholar]
  31. Peculis B.A., Reynolds K., Cleland M. Metal determines efficiency and substrate specificity of the nuclear NUDIX decapping proteins X29 and H29K (Nudt16) J Biol Chem. 2007;282:24792–24805. doi: 10.1074/jbc.M704179200. [DOI] [PubMed] [Google Scholar]
  32. Peculis B.A., Steitz J.A. Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in the Xenopus oocyte. Cell. 1993;73:1233–1245. doi: 10.1016/0092-8674(93)90651-6. [DOI] [PubMed] [Google Scholar]
  33. Piccirillo C., Khanna R., Kiledjian M. Functional characterization of the mammalian mRNA decapping enzyme hDcp2. RNA. 2003;9:1138–1147. doi: 10.1261/rna.5690503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Saguez C., Olesen J.R., Jensen T.H. Formation of export-competent mRNP: escaping nuclear destruction. Curr Opin Cell Biol. 2005;17:287–293. doi: 10.1016/j.ceb.2005.04.009. [DOI] [PubMed] [Google Scholar]
  35. Scarsdale J.N., Peculis B.A., Wright H.T. Crystal structures of U8 snoRNA decapping nudix hydrolase, X29, and its metal and cap complexes. Structure. 2006;14:331–343. doi: 10.1016/j.str.2005.11.010. [DOI] [PubMed] [Google Scholar]
  36. Sharma S., Black D.L. Maps, codes, and sequence elements: can we predict the protein output from an alternatively spliced locus? Neuron. 2006;52:574–576. doi: 10.1016/j.neuron.2006.11.005. [DOI] [PubMed] [Google Scholar]
  37. Song M.G., Li Y., Kiledjian M. Multiple mRNA decapping enzymes in mammalian cells. Mol Cell. 2010;40:423–432. doi: 10.1016/j.molcel.2010.10.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Taylor M.J., Peculis B.A. Evolutionary conservation supports ancient origin for Nudt16, a nuclear-localized, RNA-binding, RNA-decapping enzyme. Nucleic Acids Res. 2008;36:6021–6034. doi: 10.1093/nar/gkn605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tomasevic N., Peculis B. Identification of a U8 snoRNA-specific binding protein. J Biol Chem. 1999;274:35914–35920. doi: 10.1074/jbc.274.50.35914. [DOI] [PubMed] [Google Scholar]
  40. Tucker M., Parker R. Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae. Annu Rev Biochem. 2000;69:571–595. doi: 10.1146/annurev.biochem.69.1.571. [DOI] [PubMed] [Google Scholar]
  41. van Dijk E., Cougot N., Meyer S., Babajko S., Wahle E., Séraphin B. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J. 2002;21:6915–6924. doi: 10.1093/emboj/cdf678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vasudevan S., Peltz S.W. Nuclear mRNA surveillance. Curr Opin Cell Biol. 2003;15:332–337. doi: 10.1016/S0955-0674(03)00051-6. [DOI] [PubMed] [Google Scholar]
  43. Wang Z., Jiao X., Carr-Schmid A., Kiledjian M. The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci U S A. 2002;99:12663–12668. doi: 10.1073/pnas.192445599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wang Z., Kiledjian M. Functional link between the mammalian exosome and mRNA decapping. Cell. 2001;107:751–762. doi: 10.1016/S0092-8674(01)00592-X. [DOI] [PubMed] [Google Scholar]
  45. Wilusz C.J., Wilusz J. Bringing the role of mRNA decay in the control of gene expression into focus. Trends Genet. 2004;20:491–497. doi: 10.1016/j.tig.2004.07.011. [DOI] [PubMed] [Google Scholar]
  46. Zhang J., Gao F., Zhang Q., Chen Q., Qi J., Yan J. Crystallization and crystallographic analysis of human NUDT16. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008;64:639–640. doi: 10.1107/S1744309108016928. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES