Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2011 Apr 6;2(3):189–201. doi: 10.1007/s13238-011-1016-3

Animal models for the atherosclerosis research: a review

Li Xiangdong 1,, Liu Yuanwu 1, Zhang Hua 1, Ren Liming 1, Li Qiuyan 1, Li Ning 1,
PMCID: PMC4875304  PMID: 21468891

Abstract

Atherosclerosis is a leading cause of death worldwide, and its mechanisms are still unclear. However, various animal models have significantly advanced our understanding of the mechanisms involved in atherosclerosis and have allowed the evaluation of therapeutic options. The aim of this paper is to review those animal models (i.e., rabbits, mice, rats, guinea pigs, hamsters, avian, carnivores, swine, and, non-human primates) that have been used to study atherosclerosis. Though there is no single perfect animal model that completely replicates the stages of human atherosclerosis, cholesterol feeding and mechanical endothelial injury are two common features shared by most models of atherosclerosis. Further, with the development of genetically modified animals, these models are significantly broadening our understanding of the pathogenesis of atherosclerosis.

Keywords: animal model, atherosclerosis

Contributor Information

Li Xiangdong, Email: xiangdongli@cau.edu.cn.

Li Ning, Email: ninglcau@cau.edu.cn.

References

  1. Abela G.S., Picon P.D., Friedl S.E., Gebara O.C., Miyamoto A., Federman M., Tofler G.H., Muller J.E. Triggering of plaque disruption and arterial thrombosis in an atherosclerotic rabbit model. Circulation. 1995;91:776–784. doi: 10.1161/01.cir.91.3.776. [DOI] [PubMed] [Google Scholar]
  2. Adams C.W.M., Miller N.E., Morgan R.S., Rao S.N. Lipoprotein levels and tissue lipids in fatty-fibrous atherosclerosis induced in rabbits by two years’ cholesterol feeding at a low level. Atherosclerosis. 1982;44:1–8. doi: 10.1016/0021-9150(82)90047-8. [DOI] [PubMed] [Google Scholar]
  3. Aggarwal D., Fernandez M.L., Soliman G.A. Rapamycin, an mTOR inhibitor, disrupts triglyceride metabolism in guinea pigs. Metabolism. 2006;55:794–802. doi: 10.1016/j.metabol.2006.01.017. [DOI] [PubMed] [Google Scholar]
  4. Aggarwal D., West K.L., Zern T.L., Shrestha S., Vergara-Jimenez M., Fernandez M.L. JTT-130, a microsomal triglyceride transfer protein (MTP) inhibitor lowers plasma triglycerides and LDL cholesterol concentrations without increasing hepatic triglycerides in guinea pigs. BMC Cardiovasc Disord. 2005;5:30. doi: 10.1186/1471-2261-5-30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aikawa M., Rabkin E., Voglic S.J., Shing H., Nagai R., Schoen F. J., Libby P. Lipid lowering promotes accumulation of mature smooth muscle cells expressing smooth muscle myosin heavy chain isoforms in rabbit atheroma. Circ Res. 1998;83:1015–1026. doi: 10.1161/01.res.83.10.1015. [DOI] [PubMed] [Google Scholar]
  6. Aliev G., Burnstock G. Watanabe rabbits with heritable hypercholesterolaemia: a model of atherosclerosis. Histol Histopathol. 1998;13:797–817. doi: 10.14670/HH-13.797. [DOI] [PubMed] [Google Scholar]
  7. Anitschkow N., Chalatow S. Uber experimentelle Cholesterinsteatose und ihre Bedeutung fur die Entstehung einiger pathologischer Prozesse. Centrbl Allg Pathol Pathol Anat. 1913;24:1–9. [Google Scholar]
  8. Armstrong M.L., Heistad D.D. Animal models of atherosclerosis. Atherosclerosis. 1990;85:15–23. doi: 10.1016/0021-9150(90)90178-l. [DOI] [PubMed] [Google Scholar]
  9. Armstrong M.L., Warner E.D. Morphology and distribution of diet-induced atherosclerosis in rhesus monkeys. Arch Pathol. 1971;92:395–401. [PubMed] [Google Scholar]
  10. Association, A.H. (2010). Heart Disease and Stroke Statistics-2009 Update (All Charts) [Accessed August 17, 2009]. Available at: http://wwwamericanheartorg/presenterjhtml?identifier=3018163.
  11. Barakat H.A., St Clair R.W. Characterization of plasma lipoproteins of grain- and cholesterol-fed White Carneau and Show Racer pigeons. J Lipid Res. 1985;26:1252–1268. [PubMed] [Google Scholar]
  12. Bell F.P., Gerrity R.G. Evidence for an altered lipid metabolic state in circulating blood monocytes under conditions of hyperlipemia in swine and its implications in arterial lipid metabolism. Arterioscler Thromb. 1992;12:155–162. doi: 10.1161/01.atv.12.2.155. [DOI] [PubMed] [Google Scholar]
  13. Bocan T.M.A., Mueller S.B., Mazur M.J., Uhlendorf P.D., Brown E. Q., Kieft K.A. The relationship between the degree of dietary-induced hypercholesterolemia in the rabbit and atherosclerotic lesion formation. Atherosclerosis. 1993;102:9–22. doi: 10.1016/0021-9150(93)90080-e. [DOI] [PubMed] [Google Scholar]
  14. Bowman T.A., Hughes H.C. Swine as an in vivo model for electrophysiologic evaluation of cardiac pacing parameters. Pacing Clin Electrophysiol. 1984;7:187–194. doi: 10.1111/j.1540-8159.1984.tb04885.x. [DOI] [PubMed] [Google Scholar]
  15. Breslow J.L. Mouse models of atherosclerosis. Science. 1996;272:685–688. doi: 10.1126/science.272.5262.685. [DOI] [PubMed] [Google Scholar]
  16. Brousseau M.E., Hoeg J.M. Transgenic rabbits as models for atherosclerosis research. J Lipid Res. 1999;40:365–375. [PubMed] [Google Scholar]
  17. Butkus A., Ehrhart L.A., McCullagh K.G. Plasma and aortic lipids in experimental canine atherosclerosis. Exp Mol Pathol. 1976;25:152–162. doi: 10.1016/0014-4800(76)90025-3. [DOI] [PubMed] [Google Scholar]
  18. Chinellato A., Ragazzi E., Petrelli L., Paro M., Mironov A., Aliev G. Effect of cholesterol-supplemented diet in heritable hyperlipidemic Yoshida rats: functional and morphological characterization of thoracic aorta. Atherosclerosis. 1994;106:51–63. doi: 10.1016/0021-9150(94)90082-5. [DOI] [PubMed] [Google Scholar]
  19. Chue W.L., Campbell G.R., Caplice N., Muhammed A., Berry C.L., Thomas A.C., Bennett M.B., Campbell J.H. Dog peritoneal and pleural cavities as bioreactors to grow autologous vascular grafts. J Vasc Surg. 2004;39:859–867. doi: 10.1016/j.jvs.2003.03.003. [DOI] [PubMed] [Google Scholar]
  20. Clarkson T.B., Lehner N.D., Bullock B.C., Lofland H.B., Wagner W.D. Atherosclerosis in new world monkeys. Primates Med. 1976;9:90–144. [PubMed] [Google Scholar]
  21. Clarkson T.B., Prichard R.W., Netsky M.G., Lofland H.B. Atherosclerosis in pigeons; its spontaneous occurrence and resemblance to human atherosclerosis. AMA Arch Pathol. 1959;68:143–147. [PubMed] [Google Scholar]
  22. Cornhill J.F., Roach M.R. Quantitative method for the evaluation of atherosclerotic lesions. Atherosclerosis. 1974;20:131–136. doi: 10.1016/0021-9150(74)90086-0. [DOI] [PubMed] [Google Scholar]
  23. Cornhill J.F., Roach M.R. A quantitative study of the localization of atherosclerotic lesions in the rabbit aorta. Atherosclerosis. 1976;23:489–501. doi: 10.1016/0021-9150(76)90009-5. [DOI] [PubMed] [Google Scholar]
  24. Dauber D., Horlick L., Katz L.N. The role of desiccated thyroid and potassium iodide in the cholesterol-induced atherosclerosis of the chicken. Am Heart J. 1949;38:25–33. doi: 10.1016/0002-8703(49)90789-9. [DOI] [PubMed] [Google Scholar]
  25. Dauber D.V. Spontaneous atherosclerosis in chickens. AMA Arch Pathol. 1944;38:46–51. [Google Scholar]
  26. David T.E., Armstrong S., Maganti M., Butany J., Feindel C.M., Bos J. Postimplantation morphologic changes of glutaraldehyde-fixed porcine aortic roots and risk of aneurysm and rupture. J Thorac Cardiovasc Surg. 2009;137:94–100. doi: 10.1016/j.jtcvs.2008.07.004. [DOI] [PubMed] [Google Scholar]
  27. David T.E., Puschmann R., Ivanov J., Bos J., Armstrong S., Feindel C.M., Scully H.E. Aortic valve replacement with stentless and stented porcine valves: a case-match study. J Thorac Cardiovasc Surg. 1998;116:236–241. doi: 10.1016/s0022-5223(98)70122-9. [DOI] [PubMed] [Google Scholar]
  28. Davies M.K., Hollman A. Atherosclerosis and myocardial infarction. Heart. 1998;79:218. doi: 10.1136/hrt.79.3.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Dillard A., Matthan N.R., Lichtenstein A.H. Use of hamster as a model to study diet-induced atherosclerosis. Nutr Metab (Lond) 2010;7:89. doi: 10.1186/1743-7075-7-89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Duverger N., Kruth H., Emmanuel F., Caillaud J.M., Viglietta C., Castro G., Tailleux A., Fievet C., Fruchart J.C., Houdebine L.M., et al. Inhibition of atherosclerosis development in cholesterol-fed human apolipoprotein A-I-transgenic rabbits. Circulation. 1996;94:713–717. doi: 10.1161/01.cir.94.4.713. [DOI] [PubMed] [Google Scholar]
  31. El-Khatib F.H., Jiang J., Gerrity R.G., Damiano E.R. Pharmacodynamics and stability of subcutaneously infused glucagon in a type 1 diabetic Swine model in vivo. Diabetes Technol Ther. 2007;9:135–144. doi: 10.1089/dia.2006.0006. [DOI] [PubMed] [Google Scholar]
  32. Fabricant C.G., Fabricant J., Litrenta M.M., Minick C.R. Virus-induced atherosclerosis. J Exp Med. 1978;148:335–340. doi: 10.1084/jem.148.1.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Fan J., McCormick S.P.A., Krauss R.M., Taylor S., Quan R., Taylor J.M., Young S.G. Overexpression of human apolipoprotein B-100 in transgenic rabbits results in increased levels of LDL and decreased levels of HDL. Arterioscler Thromb Vasc Biol. 1995;15:1889–1899. doi: 10.1161/01.atv.15.11.1889. [DOI] [PubMed] [Google Scholar]
  34. Fan J., Shimoyamada H., Sun H., Marcovina S., Honda K., Watanabe T. Transgenic rabbits expressing human apolipoprotein(a) develop more extensive atherosclerotic lesions in response to a cholesterol-rich diet. Arterioscler Thromb Vasc Biol. 2001;21:88–94. doi: 10.1161/01.atv.21.1.88. [DOI] [PubMed] [Google Scholar]
  35. Fan J., Unoki H., Kojima N., Sun H., Shimoyamada H., Deng H., Okazaki M., Shikama H., Yamada N., Watanabe T. Overexpression of lipoprotein lipase in transgenic rabbits inhibits diet-induced hypercholesterolemia and atherosclerosis. J Biol Chem. 2001;276:40071–40079. doi: 10.1074/jbc.M105456200. [DOI] [PubMed] [Google Scholar]
  36. Fan J., Wang J., Bensadoun A., Lauer S.J., Dang Q., Mahley R. W., Taylor J.M. Overexpression of hepatic lipase in transgenic rabbits leads to a marked reduction of plasma high density lipoproteins and intermediate density lipoproteins. Proc Natl Acad Sci U S A. 1994;91:8724–8728. doi: 10.1073/pnas.91.18.8724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Fernandez M.L., Volek J.S. Guinea pigs: a suitable animal model to study lipoprotein metabolism, atherosclerosis and inflammation. Nutr Metab (Lond) 2006;3:17. doi: 10.1186/1743-7075-3-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Fernandez M.L., Wilson T.A., Conde K., Vergara-Jimenez M., Nicolosi R.J. Hamsters and guinea pigs differ in their plasma lipoprotein cholesterol distribution when fed diets varying in animal protein, soluble fiber, or cholesterol content. J Nutr. 1999;129:1323–1332. doi: 10.1093/jn/129.7.1323. [DOI] [PubMed] [Google Scholar]
  39. Finking G., Hanke H. Nikolaj Nikolajewitsch Anitschkow (1885–1964) established the cholesterol-fed rabbit as a model for atherosclerosis research. Atherosclerosis. 1997;135:1–7. doi: 10.1016/s0021-9150(97)00161-5. [DOI] [PubMed] [Google Scholar]
  40. Fong I.W. Emerging relations between infectious diseases and coronary artery disease and atherosclerosis. CMAJ. 2000;163:49–56. [PMC free article] [PubMed] [Google Scholar]
  41. Geary R.L., Williams J.K., Golden D., Brown D.G., Benjamin M.E., Adams M.R. Time course of cellular proliferation, intimal hyperplasia, and remodeling following angioplasty in monkeys with established atherosclerosis. A nonhuman primate model of restenosis. Arterioscler Thromb Vasc Biol. 1996;16:34–43. doi: 10.1161/01.atv.16.1.34. [DOI] [PubMed] [Google Scholar]
  42. Gerrity R.G. Atherogenesis in the swine Evans blue model. Vasa. 1984;13:292–297. [PubMed] [Google Scholar]
  43. Gerrity R.G., Goss J.A., Soby L. Control of monocyte recruitment by chemotactic factor(s) in lesion-prone areas of swine aorta. Arteriosclerosis. 1985;5:55–66. doi: 10.1161/01.atv.5.1.55. [DOI] [PubMed] [Google Scholar]
  44. Gerrity R.G., Naito H.K., Richardson M., Schwartz C.J. Dietary induced atherogenesis in swine. Morphology of the intima in prelesion stages. Am J Pathol. 1979;95:775–792. [PMC free article] [PubMed] [Google Scholar]
  45. Gerrity R.G., Natarajan R., Nadler J.L., Kimsey T. Diabetes-induced accelerated atherosclerosis in swine. Diabetes. 2001;50:1654–1665. doi: 10.2337/diabetes.50.7.1654. [DOI] [PubMed] [Google Scholar]
  46. Ginzinger D.G., Wilson J.E., Redenbach D., Lewis M.E., Clee S. M., Excoffon K.J., Rogers Q.R., Hayden M.R., McManus B. M. Diet-induced atherosclerosis in the domestic cat. Lab Invest. 1997;77:409–419. [PubMed] [Google Scholar]
  47. Glass C.K., Witztum J.L. Atherosclerosis. the road ahead. Cell. 2001;104:503–516. doi: 10.1016/s0092-8674(01)00238-0. [DOI] [PubMed] [Google Scholar]
  48. Go A.S., Chertow G.M., Fan D., McCulloch C.E., Hsu C.Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–1305. doi: 10.1056/NEJMoa041031. [DOI] [PubMed] [Google Scholar]
  49. Go A.S., Yang J., Ackerson L.M., Lepper K., Robbins S., Massie B.M., Shlipak M.G. Hemoglobin level, chronic kidney disease, and the risks of death and hospitalization in adults with chronic heart failure: the Anemia in Chronic Heart Failure: Outcomes and Resource Utilization (ANCHOR) Study. Circulation. 2006;113:2713–2723. doi: 10.1161/CIRCULATIONAHA.105.577577. [DOI] [PubMed] [Google Scholar]
  50. Grove D., Pownall H.J. Comparative specificity of plasma lecithin:cholesterol acyltransferase from ten animal species. Lipids. 1991;26:416–420. doi: 10.1007/BF02536066. [DOI] [PubMed] [Google Scholar]
  51. Grundy S.M., Howard B., Smith S., Jr, Eckel R., Redberg R., Bonow R.O. Prevention Conference VI: Diabetes and Cardiovascular Disease: executive summary: conference proceeding for healthcare professionals from a special writing group of the American Heart Association. Circulation. 2002;105:2231–2239. doi: 10.1161/01.cir.0000013952.86046.dd. [DOI] [PubMed] [Google Scholar]
  52. Hajjar D.P., Fabricant C.G., Minick C.R., Fabricant J. Virus-induced atherosclerosis. Herpesvirus infection alters aortic cholesterol metabolism and accumulation. Am J Pathol. 1986;122:62–70. [PMC free article] [PubMed] [Google Scholar]
  53. Hammad S.M., Siegel H.S., Marks H.L. Total cholesterol, total triglycerides, and cholesterol distribution among lipoproteins as predictors of atherosclerosis in selected lines of Japanese quail. Comp Biochem Physiol A Mol Integr Physiol. 1998;119:485–492. doi: 10.1016/s1095-6433(97)00455-8. [DOI] [PubMed] [Google Scholar]
  54. Hancock J.B., Forshaw P.L., Kaye M.P. Gore-Tex (polytetrafluoroethylene) in canine coronary artery bypass. J Thorac Cardiovasc Surg. 1980;80:94–101. [PubMed] [Google Scholar]
  55. Hansson G.K. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–1695. doi: 10.1056/NEJMra043430. [DOI] [PubMed] [Google Scholar]
  56. Hansson G.K. Atherosclerosis—an immune disease: The Anitschkov Lecture 2007. Atherosclerosis. 2009;202:2–10. doi: 10.1016/j.atherosclerosis.2008.08.039. [DOI] [PubMed] [Google Scholar]
  57. Herrera V.L.M., Makrides S.C., Xie H.X., Adari H., Krauss R.M., Ryan U.S., Ruiz-Opazo N. Spontaneous combined hyperlipidemia, coronary heart disease and decreased survival in Dahl salt-sensitive hypertensive rats transgenic for human cholesteryl ester transfer protein. Nat Med. 1999;5:1383–1389. doi: 10.1038/70956. [DOI] [PubMed] [Google Scholar]
  58. Hoeg J.M., Santamarina-Fojo S., Bérard A.M., Cornhill J.F., Herderick E.E., Feldman S.H., Haudenschild C.C., Vaisman B. L., Hoyt R.F., Jr, Demosky S.J., Jr, et al. Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis. Proc Natl Acad Sci U S A. 1996;93:11448–11453. doi: 10.1073/pnas.93.21.11448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Hoeg J.M., Vaisman B.L., Demosky S.J., Jr, Santamarina-Fojo S., Brewer H.B., Jr, Remaley A.T., Hoyt R.F., Feldman S. Development of transgenic Watanabe Heritable Hyperlipidemic rabbits expressing human apolipoprotein A-I. Circulation. 1993;88:1–2. [Google Scholar]
  60. Holvoet P., Theilmeier G., Shivalkar B., Flameng W., Collen D. LDL hypercholesterolemia is associated with accumulation of oxidized LDL, atherosclerotic plaque growth, and compensatory vessel enlargement in coronary arteries of miniature pigs. Arterioscler Thromb Vasc Biol. 1998;18:415–422. doi: 10.1161/01.atv.18.3.415. [DOI] [PubMed] [Google Scholar]
  61. Hughes H.C. Swine in cardiovascular research. Lab Anim Sci. 1986;36:348–350. [PubMed] [Google Scholar]
  62. Hunt C.E., Duncan L.A. Hyperlipoproteinaemia and atherosclerosis in rabbits fed low-level cholesterol and lecithin. Br J Exp Pathol. 1985;66:35–46. [PMC free article] [PubMed] [Google Scholar]
  63. Ignatowski A.C. Influence of animal food on the organism of rabbits. Izv Imp Voyenno-Med Akad Peter. 1908;16:154–173. [Google Scholar]
  64. Ishii A., Viñuela F., Murayama Y., Yuki I., Nien Y.L., Yeh D.T., Vinters H.V. Swine model of carotid artery atherosclerosis: experimental induction by surgical partial ligation and dietary hypercholesterolemia. AJNR Am J Neuroradiol. 2006;27:1893–1899. [PMC free article] [PubMed] [Google Scholar]
  65. Johnstone M.T., Botnar R.M., Perez A.S., Stewart R., Quist W.C., Hamilton J.A., Manning W.J. In vivo magnetic resonance imaging of experimental thrombosis in a rabbit model. Arterioscler Thromb Vasc Biol. 2001;21:1556–1560. doi: 10.1161/hq0901.094242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Joris I., Zand T., Nunnari J.J., Krolikowski F.J., Majno G. Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol. 1983;113:341–358. [PMC free article] [PubMed] [Google Scholar]
  67. Kahlon T., Chow F., Irving D., Sayre R. Cholesterol response and foam cell formation in hamsters fed two levels of saturated fat and various levels of cholesterol. Nutr Res. 1996;16:1353–1368. [Google Scholar]
  68. Kahlon T.S., Chow F.I., Irving D.W., Sayre R.N. Cholesterol response and fatty streak formation in hamsters fed two levels of saturated fat and various levels of cholesterol. Nutr Res. 1997;17:1693–1707. [Google Scholar]
  69. Keech A.C., Harper R.W., Harrison P.M., Pitt A., McLean A.J. Pharmacokinetic interaction between oral metoprolol and verapamil for angina pectoris. Am J Cardiol. 1986;58:551–552. doi: 10.1016/0002-9149(86)90032-9. [DOI] [PubMed] [Google Scholar]
  70. Kent W.C., Whitney J.E. Cholesterol kinetics in control and hypercholesterolemic foxhounds. Artery. 1982;11:15–32. [PubMed] [Google Scholar]
  71. Kita T., Nagano Y., Yokode M., Ishii K., Kume N., Ooshima A., Yoshida H., Kawai C. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci U S A. 1987;84:5928–5931. doi: 10.1073/pnas.84.16.5928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Knopp R.H. Drug treatment of lipid disorders. N Engl J Med. 1999;341:498–511. doi: 10.1056/NEJM199908123410707. [DOI] [PubMed] [Google Scholar]
  73. Knopp R.H., Paramsothy P. Treatment of hypercholesterolemia in patients with metabolic syndrome: how do different statins compare? Nat Clin Pract Endocrinol Metab. 2006;2:136–137. doi: 10.1038/ncpendmet0116. [DOI] [PubMed] [Google Scholar]
  74. Kolodgie F.D., Katocs A.S. J., Largis E.E., Wrenn S.M., Cornhill J. F., Herderick E.E., Lee S.J., Virmani R. Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol. Methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type. Arterioscler Thromb Vasc Biol. 1996;16:1454–1464. doi: 10.1161/01.atv.16.12.1454. [DOI] [PubMed] [Google Scholar]
  75. Kovesdy C.P., Trivedi B.K., Anderson J.E. Association of kidney function with mortality in patients with chronic kidney disease not yet on dialysis: a historical prospective cohort study. Adv Chronic Kidney Dis. 2006;13:183–188. doi: 10.1053/j.ackd.2006.01.005. [DOI] [PubMed] [Google Scholar]
  76. Kritchevsky D. Dietary protein, cholesterol and atherosclerosis: a review of the early history. J Nutr. 1995;125:589S–593S. doi: 10.1093/jn/125.suppl_3.589S. [DOI] [PubMed] [Google Scholar]
  77. Kritchevsky D., Tepper S.A., Williams D.E., Story J.A. Experimental atherosclerosis in rabbits fed cholesterol-free diets. Part 7. Interaction of animal or vegetable protein with fiber. Atherosclerosis. 1977;26:397–403. doi: 10.1016/0021-9150(77)90110-1. [DOI] [PubMed] [Google Scholar]
  78. Kusumi Y., Scanu A.M., McGill H.C., Wissler R.W. Atherosclerosis in a rhesus monkey with genetic hypercholesterolemia and elevated plasma Lp(a) Atherosclerosis. 1993;99:165–174. doi: 10.1016/0021-9150(93)90019-q. [DOI] [PubMed] [Google Scholar]
  79. Lehner N.D., Bullock B.C., Clarkson T.B. Intranuclear inclusion disease of pigeons. J Am Vet Med Assoc. 1967;151:939–941. [PubMed] [Google Scholar]
  80. Libby P., Aikawa M. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat Med. 2002;8:1257–1262. doi: 10.1038/nm1102-1257. [DOI] [PubMed] [Google Scholar]
  81. Liedtke A.J., Hughes H.C., Neely J.R. An experimental model for studying myocardial ischemia. Correlation of hemodynamic performance and metabolism in the working swine heart. J Thorac Cardiovasc Surg. 1975;69:203–211. [PubMed] [Google Scholar]
  82. Lindsay S., Chaikoff I.L. Naturally occurring arteriosclerosis in nonhuman primates. J Atheroscler Res. 1966;6:36–61. [Google Scholar]
  83. Lock A.L., Horne C.A.M., Bauman D.E., Salter A.M. Butter naturally enriched in conjugated linoleic acid and vaccenic acid alters tissue fatty acids and improves the plasma lipoprotein profile in cholesterol-fed hamsters. J Nutr. 2005;135:1934–1939. doi: 10.1093/jn/135.8.1934. [DOI] [PubMed] [Google Scholar]
  84. Lynch S.M., Gaziano J.M., Frei B. Ascorbic acid and atherosclerotic cardiovascular disease. Subcell Biochem. 1996;25:331–367. doi: 10.1007/978-1-4613-0325-1_17. [DOI] [PubMed] [Google Scholar]
  85. Mahley R.W., Weisgraber K.H., Innerarity T. Canine lipoproteins and atherosclerosis. II. Characterization of the plasma lipoproteins associated with atherogenic and nonatherogenic hyperlipidemia. Circ Res. 1974;35:722–733. doi: 10.1161/01.res.35.5.722. [DOI] [PubMed] [Google Scholar]
  86. Andrus S.B., Mann G.V. Xanthomatosis and atherosclerosis produced by diet in an adult rhesus monkey. J Lab Clin Med. 1956;48:533–550. [PubMed] [Google Scholar]
  87. Mann G.V., Andrus S.B., McNALLY A., Stare F.J. Experimental atherosclerosis in Cebus monkeys. J Exp Med. 1953;98:195–218. doi: 10.1084/jem.98.3.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Marotti K.R., Castle C.K., Boyle T.P., Lin A.H., Murray R.W., Melchior G.W. Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature. 1993;364:73–75. doi: 10.1038/364073a0. [DOI] [PubMed] [Google Scholar]
  89. McKenzie J.E., Scandling D.M., Ahle N.W., Bryant H.J., Kyle R.R., Abbrecht P.H. Effects of soman (pinacolyl methylphosphonofluoridate) on coronary blood flow and cardiac function in swine. Fundam Appl Toxicol. 1996;29:140–146. doi: 10.1006/faat.1996.0015. [DOI] [PubMed] [Google Scholar]
  90. Mezdour H., Jones R., Dengremont C., Castro G., Maeda N. Hepatic lipase deficiency increases plasma cholesterol but reduces susceptibility to atherosclerosis in apolipoprotein E-deficient mice. J Biol Chem. 1997;272:13570–13575. doi: 10.1074/jbc.272.21.13570. [DOI] [PubMed] [Google Scholar]
  91. Miller F.A., Perry J.F., Jr, Thal A., Wangensteen O.H. Direct suture anastomosis of the coronary arteries in the dog. Surgery. 1956;40:1023–1029. [PubMed] [Google Scholar]
  92. Moghadasian M.H. Clinical pharmacology of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Life Sci. 1999;65:1329–1337. doi: 10.1016/s0024-3205(99)00199-x. [DOI] [PubMed] [Google Scholar]
  93. Moghadasian M.H., McManus B.M., Frohlich J.J. Homocyst(e)ine and coronary artery disease. Clinical evidence and genetic and metabolic background. Arch Intern Med. 1997;157:2299–2308. [PubMed] [Google Scholar]
  94. Mohrschladt M.F., Westendorp R.G.J., Gevers Leuven J.A., Smelt A.H.M. Cardiovascular disease and mortality in statin-treated patients with familial hypercholesterolemia. Atherosclerosis. 2004;172:329–335. doi: 10.1016/j.atherosclerosis.2003.11.007. [DOI] [PubMed] [Google Scholar]
  95. Narayanaswamy M., Wright K.C., Kandarpa K. Animal models for atherosclerosis, restenosis, and endovascular graft research. J Vasc Interv Radiol. 2000;11:5–17. doi: 10.1016/s1051-0443(07)61271-8. [DOI] [PubMed] [Google Scholar]
  96. Nishina P.M., Verstuyft J., Paigen B. Synthetic low and high fat diets for the study of atherosclerosis in the mouse. J Lipid Res. 1990;31:859–869. [PubMed] [Google Scholar]
  97. Nistor A., Bulla A., Filip D.A., Radu A. The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis. 1987;68:159–173. doi: 10.1016/0021-9150(87)90106-7. [DOI] [PubMed] [Google Scholar]
  98. Nojiri C., Noishiki Y., Koyanagi H. Aorta-coronary bypass grafting with heparinized vascular grafts in dogs. A preliminary study. J Thorac Cardiovasc Surg. 1987;93:867–877. [PubMed] [Google Scholar]
  99. Ojerio A.D., Pucak G.J., Clarkson T.B., Bullock B.C. Diet-induced atherosclerosis and myocardial infarction in Japanese quail. Lab Anim Sci. 1972;22:33–39. [PubMed] [Google Scholar]
  100. Okamoto K., Aoki K., Nosaka S., Fukushima M. Cardiovascular Diseases in the Spontaneously Hypertensive Rat. Jpn Circ J. 1964;28:943–952. doi: 10.1253/jcj.28.943. [DOI] [PubMed] [Google Scholar]
  101. Oku H., Ishikawa M., Nagata J., Toda T., Chinen I. Lipoprotein and apoprotein profile of Japanese quail. Biochimica et Biophysica Acta — Lipids and Lipid Metabolism. 1993;1167:22–28. doi: 10.1016/0005-2760(93)90212-r. [DOI] [PubMed] [Google Scholar]
  102. Organization, W.H. (2011). Cardiovascular Diseases Fact Sheet. [Accessed August 17, 2009]. Available at: http://wwwwhoint/mediacentre/factsheets/fs317/en/printhtml.
  103. Paigen B., Morrow A., Brandon C., Mitchell D., Holmes P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis. 1985;57:65–73. doi: 10.1016/0021-9150(85)90138-8. [DOI] [PubMed] [Google Scholar]
  104. Pătraşcu I.V. Marek’s disease. XVII. Studies on virus induced-atherosclerosis. Virologie. 1987;38:245–250. [PubMed] [Google Scholar]
  105. Plump A.S., Smith J.D., Hayek T., Aalto-Setälä K., Walsh A., Verstuyft J.G., Rubin E.M., Breslow J.L. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992;71:343–353. doi: 10.1016/0092-8674(92)90362-g. [DOI] [PubMed] [Google Scholar]
  106. Prescott M.F., McBride C.H., Hasler-Rapacz J., Von Linden J., Rapacz J. Development of complex atherosclerotic lesions in pigs with inherited hyper-LDL cholesterolemia bearing mutant alleles for apolipoprotein B. Am J Pathol. 1991;139:139–147. [PMC free article] [PubMed] [Google Scholar]
  107. Prichard R.W., Clarkson T.B., Goodman H.O., Lofland H.B. Aortic Atherosclerosis in Pigeons and Its Complications. Arch Pathol. 1964;77:244–257. [PubMed] [Google Scholar]
  108. Purcell-Huynh D.A., Farese R.V., Jr, Johnson D.F., Flynn L.M., Pierotti V., Newland D.L., Linton M.F., Sanan D.A., Young S.G. Transgenic mice expressing high levels of human apolipoprotein B develop severe atherosclerotic lesions in response to a high-fat diet. J Clin Invest. 1995;95:2246–2257. doi: 10.1172/JCI117915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Ramaswamy M., Wallace T.L., Cossum P.A., Wasan K.M. Species differences in the proportion of plasma lipoprotein lipid carried by high-density lipoproteins influence the distribution of free and liposomal nystatin in human, dog, and rat plasma. Antimicrob Agents Chemother. 1999;43:1424–1428. doi: 10.1128/aac.43.6.1424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Rapacz J., Hasler-Rapacz J., Taylor K.M., Checovich W.J., Attie A.D. Lipoprotein mutations in pigs are associated with elevated plasma cholesterol and atherosclerosis. Science. 1986;234:1573–1577. doi: 10.1126/science.3787263. [DOI] [PubMed] [Google Scholar]
  111. Rogers K.A., Karnovsky M.J. A rapid method for the detection of early stages of atherosclerotic lesion formation. Am J Pathol. 1988;133:451–455. [PMC free article] [PubMed] [Google Scholar]
  112. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362:801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  113. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340:115–126. doi: 10.1056/NEJM199901143400207. [DOI] [PubMed] [Google Scholar]
  114. Russell J.C., Koeslag D.G., Dolphin P.J., Amy R.M. Beneficial effects of acarbose in the atherosclerosis-prone JCR: LA-corpulent rat. Metabolism. 1993;42:218–223. doi: 10.1016/0026-0495(93)90039-q. [DOI] [PubMed] [Google Scholar]
  115. Saltykow S. Atherosklerose bei kaninchen nach weiderhotten staphylokokkeningjiktionen. Jena: Beitr Z Pathol Anat U Z Allg Pathol; 1908. pp. 147–171. [Google Scholar]
  116. Sauvage L.R., Berger K.E., Wood S.J., Yates S.G., 2nd, Smith J.C., Mansfield P.B. Interspecies healing of porous arterial prostheses: observations, 1960 to 1974. Arch Surg. 1974;109:698–705. doi: 10.1001/archsurg.1974.01360050092020. [DOI] [PubMed] [Google Scholar]
  117. Scanu A.M., Khalil A., Neven L., Tidore M., Dawson G., Pfaffinger D., Jackson E., Carey K.D., McGill H.C., Fless G.M. Genetically determined hypercholesterolemia in a rhesus monkey family due to a deficiency of the LDL receptor. J Lipid Res. 1988;29:1671–1681. [PubMed] [Google Scholar]
  118. Schoen F.J., Levy R.J. SnapShot: calcification of bioprosthetic heart valves. Biomaterials. 2009;30:4445–4446. doi: 10.1016/j.biomaterials.2009.05.071. [DOI] [PubMed] [Google Scholar]
  119. Shen J., Herderick E., Cornhill J.F., Zsigmond E., Kim H.S., Kühn H., Guevara N.V., Chan L. Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development. J Clin Invest. 1996;98:2201–2208. doi: 10.1172/JCI119029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Shih J.C.H., Pullman E.P., Kao K.J. Genetic selection, general characterization, and histology of atherosclerosissusceptible and -resistant Japanese quail. Atherosclerosis. 1983;49:41–53. doi: 10.1016/0021-9150(83)90006-0. [DOI] [PubMed] [Google Scholar]
  121. Singh V., Tiwari R.L., Dikshit M., Barthwal M.K. Models to study atherosclerosis: a mechanistic insight. Curr Vasc Pharmacol. 2009;7:75–109. doi: 10.2174/157016109787354097. [DOI] [PubMed] [Google Scholar]
  122. Skold B.H., Getty R., Ramsey F.K. Spontaneous atherosclerosis in the arterial system of aging swine. Am J Vet Res. 1966;27:257–273. [PubMed] [Google Scholar]
  123. Spagnoli L.G., Orlandi A., Mauriello A., Santeusanio G., de Angelis C., Lucreziotti R., Ramacci M.T. Aging and atherosclerosis in the rabbit. 1. Distribution, prevalence and morphology of atherosclerotic lesions. Atherosclerosis. 1991;89:11–24. doi: 10.1016/0021-9150(91)90003-l. [DOI] [PubMed] [Google Scholar]
  124. St Clair R.W. Metabolic changes in the arterial wall associated with atherosclerosis in the pigeon. Fed Proc. 1983;42:2480–2485. [PubMed] [Google Scholar]
  125. St Clair R.W. The contribution of avian models to our understanding of atherosclerosis and their promise for the future. Lab Anim Sci. 1998;48:565–568. [PubMed] [Google Scholar]
  126. St John L.C., Bell F.P. Arterial lipid biochemistry in the spontaneously hyperlipidemic Zucker rat and its similarity to early atherogenesis. Atherosclerosis. 1991;86:139–144. doi: 10.1016/0021-9150(91)90209-l. [DOI] [PubMed] [Google Scholar]
  127. Taylor C.B., Cox G.E., Counts M., Yogi N. Fatal myocardial infarction in rhesus monkey with diet-induced hypercholesterolemia. Am J Pathol. 1959;35:674. [Google Scholar]
  128. Taylor C.B., Cox G.F., Hall-Taylor B.J., Nelson L.G. Atherosclerosis in areas of vascular injury in monkeys with mild hypercholesterolemia. Circulation. 1954;10:613. [Google Scholar]
  129. Taylor J.M., Fan J. Transgenic rabbit models for the study of atherosclerosis. Frontiers in Bioscience: a Journal and Virtual Library. 1997;2:298–308. doi: 10.2741/a192. [DOI] [PubMed] [Google Scholar]
  130. Taylor R.G., Lewis J.C. Endothelial cell proliferation and monocyte adhesion to atherosclerotic lesions of white carneau pigeons. Am J Pathol. 1986;125:152–160. [PMC free article] [PubMed] [Google Scholar]
  131. Tyburczy C., Major C., Lock A.L., Destaillats F., Lawrence P., Brenna J.T., Salter A.M., Bauman D.E. Individual trans octadecenoic acids and partially hydrogenated vegetable oil differentially affect hepatic lipid and lipoprotein metabolism in golden Syrian hamsters. J Nutr. 2009;139:257–263. doi: 10.3945/jn.108.098004. [DOI] [PubMed] [Google Scholar]
  132. Véniant M.M., Zlot C.H., Walzem R.L., Pierotti V., Driscoll R., Dichek D., Herz J., Young S.G. Lipoprotein clearance mechanisms in LDL receptor-deficient “Apo-B48-only” and “Apo-B100-only” mice. J Clin Invest. 1998;102:1559–1568. doi: 10.1172/JCI4164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Vyavahare N., Ogle M., Schoen F.J., Zand R., Gloeckner D.C., Sacks M., Levy R.J. Mechanisms of bioprosthetic heart valve failure: fatigue causes collagen denaturation and glycosaminoglycan loss. J Biomed Mater Res. 1999;46:44–50. doi: 10.1002/(sici)1097-4636(199907)46:1<44::aid-jbm5>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  134. Wasan K.M., Ramaswamy M., Ng S.P., Wong W., Parrott S.C., Ojwang J.O., Wallace T., Cossum P.A. Differences in the lipoprotein distribution of free and liposome-associated alltrans-retinoic acid in human, dog, and rat plasma are due to variations in lipoprotein lipid and protein content. Antimicrob Agents Chemother. 1998;42:1646–1653. doi: 10.1128/aac.42.7.1646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Watanabe Y. Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit) Atherosclerosis. 1980;36:261–268. doi: 10.1016/0021-9150(80)90234-8. [DOI] [PubMed] [Google Scholar]
  136. West C.E., Deuring K., Schutte J.B., Terpstra A.H.M. The effect of age on the development of hypercholesterolemia in rabbits fed semipurified diets containing casein. J Nutr. 1982;112:1287–1295. doi: 10.1093/jn/112.7.1287. [DOI] [PubMed] [Google Scholar]
  137. Wisselink M.A., Koeman J.P., Wensing T., de Bruijne J., Willemse T. Hyperlipoproteinaemia associated with atherosclerosis and cutaneous xanthomatosis in a cat. Vet Q. 1994;16:199–202. doi: 10.1080/01652176.1994.9694448. [DOI] [PubMed] [Google Scholar]
  138. Witztum J.L., Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991;88:1785–1792. doi: 10.1172/JCI115499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Worthley S.G., Helft G., Fuster V., Zaman A.G., Fayad Z.A., Fallon J.T., Badimon J.J. Serial in vivo MRI documents arterial remodeling in experimental atherosclerosis. Circulation. 2000;101:586–589. doi: 10.1161/01.cir.101.6.586. [DOI] [PubMed] [Google Scholar]
  140. Yanni A.E., Yatzidis H.A., Kavantzas N.G., Agapitos E.V., Perrea D.N., Karayannacos P.E. Dietary L-aspartate and Lglutamate inhibit fatty streak initiation in cholesterol-fed rabbit. Nutr Metab Cardiovasc Dis. 2003;13:80–86. doi: 10.1016/s0939-4753(03)80022-4. [DOI] [PubMed] [Google Scholar]
  141. Zhang S.H., Reddick R.L., Piedrahita J.A., Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992;258:468–471. doi: 10.1126/science.1411543. [DOI] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES