Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2011 Apr 1;2(3):215–222. doi: 10.1007/s13238-011-1019-0

Proteomic and transcriptomic analysis of visual long-term memory in Drosophila melanogaster

Huoqing Jiang 1,2, Qinlong Hou 1,2, Zhefeng Gong 1,, Li Liu 1,3,
PMCID: PMC4875306  PMID: 21461680

Abstract

The fruit fly, Drosophila melanogaster, is able to discriminate visual landmarks and form visual long-term memory in a flight simulator. Studies focused on the molecular mechanism of long-term memory have shown that memory formation requires mRNA transcription and protein synthesis. However, little is known about the molecular mechanisms underlying the visual learning paradigm. The present study demonstrated that both spaced training procedure (STP) and consecutive training procedure (CTP) would induce long-term memory at 12 hour after training, and STP caused significantly higher 12-h memory scores compared with CTP. Label-free quantification of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and microarray were utilized to analyze proteomic and transcriptomic differences between the STP and CTP groups. Proteomic analysis revealed 30 up-regulated and 27 down-regulated proteins; Transcriptomic analysis revealed 145 up-regulated and 129 down-regulated genes. Among them, five candidate genes were verified by quantitative PCR, which revealed results similar to microarray. These results provide insight into the molecular components influencing visual long-term memory and facilitate further studies on the roles of identified genes in memory formation.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-011-1019-0 and is accessible for authorized users.

Keywords: visual learning and memory, Drosophila, long-term memory, microarray, liquid chromatography-tandem mass spectrometry

Electronic supplementary material

13238_2011_1019_MOESM1_ESM.pdf (219.3KB, pdf)

Supplementary material, approximately 219 KB.

13238_2011_1019_MOESM2_ESM.pdf (132.1KB, pdf)

Supplementary material, approximately 132 KB.

Footnotes

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-011-1019-0 and is accessible for authorized users.

Contributor Information

Zhefeng Gong, Email: zfgong@moon.ibp.ac.cn.

Li Liu, Email: liuli@sun5.ibp.ac.cn.

References

  1. Aberle H., Haghighi A.P., Fetter R.D., McCabe B.D., Magalhães T. R., Goodman C.S. wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron. 2002;33:545–558. doi: 10.1016/S0896-6273(02)00589-5. [DOI] [PubMed] [Google Scholar]
  2. Alberini C.M. Transcription factors in long-term memory and synaptic plasticity. Physiol Rev. 2009;89:121–145. doi: 10.1152/physrev.00017.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boquet I., Boujemaa R., Carlier M.F., Préat T. Ciboulot regulates actin assembly during Drosophila brain metamorphosis. Cell. 2000;102:797–808. doi: 10.1016/S0092-8674(00)00068-4. [DOI] [PubMed] [Google Scholar]
  4. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Comas D., Petit F., Preat T. Drosophila long-term memory formation involves regulation of cathepsin activity. Nature. 2004;430:460–463. doi: 10.1038/nature02726. [DOI] [PubMed] [Google Scholar]
  6. Costa-Mattioli M., Sonenberg N. Translational control of long-term synaptic plasticity and memory storage by eIF2alpha. Crit Rev Neurobiol. 2006;18:187–195. doi: 10.1615/CritRevNeurobiol.v18.i1-2.190. [DOI] [PubMed] [Google Scholar]
  7. Davis H.P., Squire L.R. Protein synthesis and memory: a review. Psychol Bull. 1984;96:518–559. doi: 10.1037/0033-2909.96.3.518. [DOI] [PubMed] [Google Scholar]
  8. DeZazzo J., Tully T. Dissection of memory formation: from behavioral pharmacology to molecular genetics. Trends Neurosci. 1995;18:212–218. doi: 10.1016/0166-2236(95)93905-D. [DOI] [PubMed] [Google Scholar]
  9. Dubnau J., Chiang A.S., Grady L., Barditch J., Gossweiler S., McNeil J., Smith P., Buldoc F., Scott R., Certa U., et al. The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr Biol. 2003;13:286–296. doi: 10.1016/S0960-9822(03)00064-2. [DOI] [PubMed] [Google Scholar]
  10. Ge X., Hannan F., Xie Z., Feng C., Tully T., Zhou H., Xie Z., Zhong Y. Notch signaling in Drosophila long-term memory formation. Proc Natl Acad Sci U S A. 2004;101:10172–10176. doi: 10.1073/pnas.0403497101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gong Z., Xia S., Liu L., Feng C., Guo A. Operant visual learning and memory in Drosophila mutants dunce, amnesiac and radish. J Insect Physiol. 1998;44:1149–1158. doi: 10.1016/S0022-1910(98)00076-6. [DOI] [PubMed] [Google Scholar]
  12. Guo A., Li L., Xia S.Z., Feng C.H., Wolf R., Heisenberg M. Conditioned visual flight orientation in Drosophila: dependence on age, practice, and diet. Learn Mem. 1996;3:49–59. doi: 10.1101/lm.3.1.49. [DOI] [PubMed] [Google Scholar]
  13. Hawkins R.D., Kandel E.R., Bailey C.H. Molecular mechanisms of memory storage in Aplysia. Biol Bull. 2006;210:174–191. doi: 10.2307/4134556. [DOI] [PubMed] [Google Scholar]
  14. Heisenberg M., Wolf R. Vision in Drosophila: genetics of microbehavior. Berlin; New York: Springer-Verlag; 1984. [Google Scholar]
  15. Ho I.S., Hannan F., Guo H.F., Hakker I., Zhong Y. Distinct functional domains of neurofibromatosis type 1 regulate immediate versus long-term memory formation. J Neurosci. 2007;27:6852–6857. doi: 10.1523/JNEUROSCI.0933-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Keene A.C., Waddell S. Drosophila olfactory memory: single genes to complex neural circuits. Nat Rev Neurosci. 2007;8:341–354. doi: 10.1038/nrn2098. [DOI] [PubMed] [Google Scholar]
  17. Kelly A., Laroche S., Davis S. Activation of mitogenactivated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J Neurosci. 2003;23:5354–5360. doi: 10.1523/JNEUROSCI.23-12-05354.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Keshishian H., Kim Y.S. Orchestrating development and function: retrograde BMP signaling in the Drosophila nervous system. Trends Neurosci. 2004;27:143–147. doi: 10.1016/j.tins.2004.01.004. [DOI] [PubMed] [Google Scholar]
  19. Liu G., Seiler H., Wen A., Zars T., Ito K., Wolf R., Heisenberg M., Liu L. Distinct memory traces for two visual features in the Drosophila brain. Nature. 2006;439:551–556. doi: 10.1038/nature04381. [DOI] [PubMed] [Google Scholar]
  20. Lu Y., Lu Y.S., Shuai Y., Feng C., Tully T., Xie Z., Zhong Y., Zhou H.M. The AKAP Yu is required for olfactory long-term memory formation in Drosophila. Proc Natl Acad Sci U S A. 2007;104:13792–13797. doi: 10.1073/pnas.0700439104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Margulies C., Tully T., Dubnau J. Deconstructing memory in Drosophila. Curr Biol. 2005;15:R700–R713. doi: 10.1016/j.cub.2005.08.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matsuno M., Horiuchi J., Tully T., Saitoe M. The Drosophila cell adhesion molecule klingon is required for long-term memory formation and is regulated by Notch. Proc Natl Acad Sci U S A. 2009;106:310–315. doi: 10.1073/pnas.0807665106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mayford M., Kandel E.R. Genetic approaches to memory storage. Trends Genet. 1999;15:463–470. doi: 10.1016/S0168-9525(99)01846-6. [DOI] [PubMed] [Google Scholar]
  24. Mazzucchelli C., Vantaggiato C., Ciamei A., Fasano S., Pakhotin P., Krezel W., Welzl H., Wolfer D.P., Pagès G., Valverde O., et al. Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron. 2002;34:807–820. doi: 10.1016/S0896-6273(02)00716-X. [DOI] [PubMed] [Google Scholar]
  25. Park E.M., Cho S. Enhanced ERK dependent CREB activation reduces apoptosis in staurosporine-treated human neuroblastoma SK-N-BE(2)C cells. Neurosci Lett. 2006;402:190–194. doi: 10.1016/j.neulet.2006.04.004. [DOI] [PubMed] [Google Scholar]
  26. Presente A., Boyles R.S., Serway C.N., de Belle J.S., Andres A.J. Notch is required for long-term memory in Drosophila. Proc Natl Acad Sci U S A. 2004;101:1764–1768. doi: 10.1073/pnas.0308259100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rosenzweig M.R., Bennett E.L., Colombo P.J., Lee D.W., Serrano P.A. Short-term, intermediate-term, and long-term memories. Behav Brain Res. 1993;57:193–198. doi: 10.1016/0166-4328(93)90135-D. [DOI] [PubMed] [Google Scholar]
  28. Sharma S.K., Carew T.J. The roles of MAPK cascades in synaptic plasticity and memory in Aplysia: facilitatory effects and inhibitory constraints. Learn Mem. 2004;11:373–378. doi: 10.1101/lm.81104. [DOI] [PubMed] [Google Scholar]
  29. Stoscheck C.M. Quantitation of protein. Methods Enzymol. 1990;182:50–68. doi: 10.1016/0076-6879(90)82008-P. [DOI] [PubMed] [Google Scholar]
  30. Walton M.R., Dragunow I. Is CREB a key to neuronal survival? Trends Neurosci. 2000;23:48–53. doi: 10.1016/S0166-2236(99)01500-3. [DOI] [PubMed] [Google Scholar]
  31. Wang Z., Edwards J.G., Riley N., Provance D.W., Jr, Karcher R., Li X.D., Davison I.G., Ikebe M., Mercer J.A., Kauer J.A., et al. Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell. 2008;135:535–548. doi: 10.1016/j.cell.2008.09.057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wang Z., Pan Y., Li W., Jiang H., Chatzimanolis L., Chang J., Gong Z., Liu L. Visual pattern memory requires foraging function in the central complex of Drosophila. Learn Mem. 2008;15:133–142. doi: 10.1101/lm.873008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wolf R., Heisenberg M. Basic organization of operant behavior as revealed in Drosophila flight orientation. J Comp Physiol A. 1991;169:699–705. doi: 10.1007/BF00194898. [DOI] [PubMed] [Google Scholar]
  34. Wu C.L., Xia S., Fu T.F., Wang H., Chen Y.H., Leong D., Chiang A.S., Tully T. Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat Neurosci. 2007;10:1578–1586. doi: 10.1038/nn2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Xia S., Liu L., Feng C., Guo A. Memory consolidation in Drosophila operant visual learning. Learn Mem. 1997;4:205–218. doi: 10.1101/lm.4.2.205. [DOI] [PubMed] [Google Scholar]
  36. Xia S., Miyashita T., Fu T.F., Lin W.Y., Wu C.L., Pyzocha L., Lin I. R., Saitoe M., Tully T., Chiang A.S. NMDA receptors mediate olfactory learning and memory in Drosophila. Curr Biol. 2005;15:603–615. doi: 10.1016/j.cub.2005.02.059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Xia S.Z., Feng C.H., Guo A.K. Multiple-phase model of memory consolidation confirmed by behavioral and pharmacological analyses of operant conditioning in Drosophila. Pharmacol Biochem Behav. 1998;60:809–816. doi: 10.1016/S0091-3057(98)00060-4. [DOI] [PubMed] [Google Scholar]
  38. Yin J.C., Wallach J.S., Wilder E.L., Klingensmith J., Dang D., Perrimon N., Zhou H., Tully T., Quinn W.G. A Drosophila CREB/CREM homolog encodes multiple isoforms, including a cyclic AMP-dependent protein kinase-responsive transcriptional activator and antagonist. Mol Cell Biol. 1995;15:5123–5130. doi: 10.1128/MCB.15.9.5123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zhao H., Zheng X., Yuan X., Wang L., Wang X., Zhong Y., Xie Z., Tully T. ben Functions with scamp during synaptic transmission and long-term memory formation in Drosophila. J Neurosci. 2009;29:414–424. doi: 10.1523/JNEUROSCI.5036-07.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

13238_2011_1019_MOESM1_ESM.pdf (219.3KB, pdf)

Supplementary material, approximately 219 KB.

13238_2011_1019_MOESM2_ESM.pdf (132.1KB, pdf)

Supplementary material, approximately 132 KB.


Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES