Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2011 Apr 6;2(3):180–188. doi: 10.1007/s13238-011-1023-4

Directed hepatic differentiation from embryonic stem cells

Xuesong Chen 1, Fanyi Zeng 1,2,
PMCID: PMC4875307  PMID: 21468890

Abstract

The liver is the largest internal organ in mammals, and is important for the maintenance of normal physiological functions of other tissues and organs. Hepatitis, cirrhosis, liver cancer and other chronic liver diseases are serious threats to human health, and these problems are compounded by a scarcity of liver donors for transplantation therapies. Directed differentiation of embryonic stem cells to liver cells is a promising strategy for obtaining hepatocytes that can be used for cell transplantation. In vitro hepatocyte differentiation of embryonic stem cells requires a profound understanding of normal development during embryonic hepatogenesis. Here we provide a simple description of hepatogenesis in vivo and discuss directed differentiation of embryonic stem cells into hepatocytes in vitro.

Keywords: stem cell differentiation, liver development, signaling pathway

References

  1. Agarwal S., Holton K.L., Lanza R. Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells. 2008;26:1117–1127. doi: 10.1634/stemcells.2007-1102. [DOI] [PubMed] [Google Scholar]
  2. Ameri J., Ståhlberg A., Pedersen J., Johansson J.K., Johannesson M.M., Artner I., Semb H. FGF2 specifies hESC-derived definitive endoderm into foregut/midgut cell lineages in a concentration-dependent manner. Stem Cells. 2010;28:45–56. doi: 10.1002/stem.249. [DOI] [PubMed] [Google Scholar]
  3. Asahina K., Fujimori H., Shimizu-Saito K., Kumashiro Y., Okamura K., Tanaka Y., Teramoto K., Arii S., Teraoka H. Expression of the liver-specific gene Cyp7a1 reveals hepatic differentiation in embryoid bodies derived from mouse embryonic stem cells. Genes Cells. 2004;9:1297–1308. doi: 10.1111/j.1365-2443.2004.00809.x. [DOI] [PubMed] [Google Scholar]
  4. Basma H., Soto-Gutiérrez A., Yannam G.R., Liu L., Ito R., Yamamoto T., Ellis E., Carson S.D., Sato S., Chen Y., et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology. 2009;136:990–999. doi: 10.1053/j.gastro.2008.10.047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beddington R.S., Smith J.C. Control of vertebrate gastrulation: inducing signals and responding genes. Curr Opin Genet Dev. 1993;3:655–661. doi: 10.1016/0959-437X(93)90103-V. [DOI] [PubMed] [Google Scholar]
  6. Burke Z., Oliver G. Prox1 is an early specific marker for the developing liver and pancreas in the mammalian foregut endoderm. Mech Dev. 2002;118:147–155. doi: 10.1016/S0925-4773(02)00240-X. [DOI] [PubMed] [Google Scholar]
  7. Calmont A., Wandzioch E., Tremblay K.D., Minowada G., Kaestner K.H., Martin G.R., Zaret K.S. An FGF response pathway that mediates hepatic gene induction in embryonic endoderm cells. Dev Cell. 2006;11:339–348. doi: 10.1016/j.devcel.2006.06.015. [DOI] [PubMed] [Google Scholar]
  8. Capo-Chichi C.D., Smedberg J.L., Rula M., Nicolas E., Yeung A.T., Adamo R.F., Frolov A., Godwin A.K., Xu X.X. Alteration of Differentiation Potentials by Modulating GATA Transcription Factors in Murine Embryonic Stem Cells. Stem Cells Int. 2010;2010:602068. doi: 10.4061/2010/602068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen W.S., Manova K., Weinstein D.C., Duncan S.A., Plump A.S., Prezioso V.R., Bachvarova R.F., Darnell J.E., Jr. Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev. 1994;8:2466–2477. doi: 10.1101/gad.8.20.2466. [DOI] [PubMed] [Google Scholar]
  10. Chinzei R., Tanaka Y., Shimizu-Saito K., Hara Y., Kakinuma S., Watanabe M., Teramoto K., Arii S., Takase K., Sato C., et al. Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology. 2002;36:22–29. doi: 10.1053/jhep.2002.34136. [DOI] [PubMed] [Google Scholar]
  11. Cirillo L.A., Lin F.R., Cuesta I., Friedman D., Jarnik M., Zaret K.S. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell. 2002;9:279–289. doi: 10.1016/S1097-2765(02)00459-8. [DOI] [PubMed] [Google Scholar]
  12. Conlon F.L., Lyons K.M., Takaesu N., Barth K.S., Kispert A., Herrmann B., Robertson E.J. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development. 1994;120:1919–1928. doi: 10.1242/dev.120.7.1919. [DOI] [PubMed] [Google Scholar]
  13. D’Amour K.A., Agulnick A.D., Eliazer S., Kelly O.G., Kroon E., Baetge E.E. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23:1534–1541. doi: 10.1038/nbt1163. [DOI] [PubMed] [Google Scholar]
  14. Dessimoz J., Opoka R., Kordich J.J., Grapin-Botton A., Wells J.M. FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev. 2006;123:42–55. doi: 10.1016/j.mod.2005.10.001. [DOI] [PubMed] [Google Scholar]
  15. Douarin N.M. An experimental analysis of liver development. Med Biol. 1975;53:427–455. [PubMed] [Google Scholar]
  16. Dudas J., Elmaouhoub A., Mansuroglu T., Batusic D., Tron K., Saile B., Papoutsi M., Pieler T., Wilting J., Ramadori G. Prospero-related homeobox 1 (Prox1) is a stable hepatocyte marker during liver development, injury and regeneration, and is absent from “oval cells”. Histochem Cell Biol. 2006;126:549–562. doi: 10.1007/s00418-006-0191-4. [DOI] [PubMed] [Google Scholar]
  17. Fair J.H., Cairns B.A., Lapaglia M., Wang J., Meyer A.A., Kim H., Hatada S., Smithies O., Pevny L. Induction of hepatic differentiation in embryonic stem cells by co-culture with embryonic cardiac mesoderm. Surgery. 2003;134:189–196. doi: 10.1067/msy.2003.225. [DOI] [PubMed] [Google Scholar]
  18. Ferlay J., Shin H.R., Bray F., Forman D., Mathers C., Parkin D. M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–2917. doi: 10.1002/ijc.25516. [DOI] [PubMed] [Google Scholar]
  19. Gasperowicz, M., and Natale, D.R. (2010). Establishing Three Blastocyst Lineages—Then What? Biol Reprod, Dec 1. [Epub ahead of print]. doi: 10.1095/biolreprod.110.085209 [DOI] [PubMed]
  20. Gómez-Lechón M.J. Oncostatin M: signal transduction and biological activity. Life Sci. 1999;65:2019–2030. doi: 10.1016/S0024-3205(99)00296-9. [DOI] [PubMed] [Google Scholar]
  21. Grapin-Botton A. Antero-posterior patterning of the vertebrate digestive tract: 40 years after Nicole Le Douarin’s PhD thesis. Int J Dev Biol. 2005;49:335–347. doi: 10.1387/ijdb.041946ag. [DOI] [PubMed] [Google Scholar]
  22. Hay D.C., Zhao D., Fletcher J., Hewitt Z.A., McLean D., Urruticoechea-Uriguen A., Black J.R., Elcombe C., Ross J.A., Wolf R., et al. Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells. 2008;26:894–902. doi: 10.1634/stemcells.2007-0718. [DOI] [PubMed] [Google Scholar]
  23. Hayhurst G.P., Strick-Marchand H., Mulet C., Richard A.F., Morosan S., Kremsdorf D., Weiss M.C. Morphogenetic competence of HNF4 alpha-deficient mouse hepatic cells. J Hepatol. 2008;49:384–395. doi: 10.1016/j.jhep.2008.04.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Houssaint E. Differentiation of the mouse hepatic primordium. I. An analysis of tissue interactions in hepatocyte differentiation. Cell Differ. 1980;9:269–279. doi: 10.1016/0045-6039(80)90026-3. [DOI] [PubMed] [Google Scholar]
  25. Ishii T., Yasuchika K., Fujii H., Hoppo T., Baba S., Naito M., Machimoto T., Kamo N., Suemori H., Nakatsuji N., et al. In vitro differentiation and maturation of mouse embryonic stem cells into hepatocytes. Exp Cell Res. 2005;309:68–77. doi: 10.1016/j.yexcr.2005.05.028. [DOI] [PubMed] [Google Scholar]
  26. Ishii T., Yasuchika K., Fukumitsu K., Kawamoto T., Kawamura-Saitoh M., Amagai Y., Ikai I., Uemoto S., Kawase E., Suemori H., et al. In vitro hepatic maturation of human embryonic stem cells by using a mesenchymal cell line derived from murine fetal livers. Cell Tissue Res. 2010;339:505–512. doi: 10.1007/s00441-009-0906-7. [DOI] [PubMed] [Google Scholar]
  27. Jochheim A., Hillemann T., Kania G., Scharf J., Attaran M., Manns M.P., Wobus A.M., Ott M. Quantitative gene expression profiling reveals a fetal hepatic phenotype of murine ES-derived hepatocytes. Int J Dev Biol. 2004;48:23–29. doi: 10.1387/ijdb.15005571. [DOI] [PubMed] [Google Scholar]
  28. Jung J., Zheng M., Goldfarb M., Zaret K.S. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science. 1999;284:1998–2003. doi: 10.1126/science.284.5422.1998. [DOI] [PubMed] [Google Scholar]
  29. Kamiya A., Kinoshita T., Ito Y., Matsui T., Morikawa Y., Senba E., Nakashima K., Taga T., Yoshida K., Kishimoto T., et al. Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. EMBO J. 1999;18:2127–2136. doi: 10.1093/emboj/18.8.2127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kamiya A., Kinoshita T., Miyajima A. Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct signaling pathways. FEBS Lett. 2001;492:90–94. doi: 10.1016/S0014-5793(01)02140-8. [DOI] [PubMed] [Google Scholar]
  31. Keng V.W., Yagi H., Ikawa M., Nagano T., Myint Z., Yamada K., Tanaka T., Sato A., Muramatsu I., Okabe M., et al. Homeobox gene Hex is essential for onset of mouse embryonic liver development and differentiation of the monocyte lineage. Biochem Biophys Res Commun. 2000;276:1155–1161. doi: 10.1006/bbrc.2000.3548. [DOI] [PubMed] [Google Scholar]
  32. Kojima N., Kinoshita T., Kamiya A., Nakamura K., Nakashima K., Taga T., Miyajima A. Cell density-dependent regulation of hepatic development by a gp130-independent pathway. Biochem Biophys Res Commun. 2000;277:152–158. doi: 10.1006/bbrc.2000.3635. [DOI] [PubMed] [Google Scholar]
  33. Kuai X.L., Cong X.Q., Li X.L., Xiao S.D. Generation of hepatocytes from cultured mouse embryonic stem cells. Liver Transpl. 2003;9:1094–1099. doi: 10.1053/jlts.2003.50207. [DOI] [PubMed] [Google Scholar]
  34. Kubo A., Kim Y.H., Irion S., Kasuda S., Takeuchi M., Ohashi K., Iwano M., Dohi Y., Saito Y., Snodgrass R., et al. The homeobox gene Hex regulates hepatocyte differentiation from embryonic stem cell-derived endoderm. Hepatology. 2010;51:633–641. doi: 10.1002/hep.23293. [DOI] [PubMed] [Google Scholar]
  35. Kubo A., Shinozaki K., Shannon J.M., Kouskoff V., Kennedy M., Woo S., Fehling H.J., Keller G. Development of definitive endoderm from embryonic stem cells in culture. Development. 2004;131:1651–1662. doi: 10.1242/dev.01044. [DOI] [PubMed] [Google Scholar]
  36. Kumashiro Y., Teramoto K., Shimizu-Saito K., Asahina K., Teraoka H., Arii S. Isolation of hepatocyte-like cells from mouse embryoid body cells. Transplant Proc. 2005;37:299–300. doi: 10.1016/j.transproceed.2005.01.036. [DOI] [PubMed] [Google Scholar]
  37. Kung J.W., Currie I.S., Forbes S.J., Ross J.A. Liver development, regeneration, and carcinogenesis. J Biomed Biotechnol. 2010;2010:984248. doi: 10.1155/2010/984248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Lade, A.G., and Monga, S.P. (2010). Beta-catenin signaling in hepatic development and progenitors: Which way does the WNT blow? Dev Dyn, Dec 23. [Epub ahead of print]. doi: 10.1002/dvdy.22522 [DOI] [PMC free article] [PubMed]
  39. Lemaigre F., Zaret K.S. Liver development update: new embryo models, cell lineage control, and morphogenesis. Curr Opin Genet Dev. 2004;14:582–590. doi: 10.1016/j.gde.2004.08.004. [DOI] [PubMed] [Google Scholar]
  40. Matsumoto K., Nakamura T. Hepatocyte growth factor: molecular structure, roles in liver regeneration, and other biological functions. Crit Rev Oncog. 1992;3:27–54. [PubMed] [Google Scholar]
  41. Medlock E.S., Haar J.L. The liver hemopoietic environment: I. Developing hepatocytes and their role in fetal hemopoiesis. Anat Rec. 1983;207:31–41. doi: 10.1002/ar.1092070105. [DOI] [PubMed] [Google Scholar]
  42. Miyajima A., Kinoshita T., Tanaka M., Kamiya A., Mukouyama Y., Hara T. Role of Oncostatin M in hematopoiesis and liver development. Cytokine Growth Factor Rev. 2000;11:177–183. doi: 10.1016/S1359-6101(00)00003-4. [DOI] [PubMed] [Google Scholar]
  43. Moore-Scott B.A., Opoka R., Lin S.C., Kordich J.J., Wells J.M. Identification of molecular markers that are expressed in discrete anterior-posterior domains of the endoderm from the gastrula stage to mid-gestation. Dev Dyn. 2007;236:1997–2003. doi: 10.1002/dvdy.21204. [DOI] [PubMed] [Google Scholar]
  44. Morrisey E.E., Tang Z., Sigrist K., Lu M.M., Jiang F., Ip H.S., Parmacek M.S. GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev. 1998;12:3579–3590. doi: 10.1101/gad.12.22.3579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Nejak-Bowen K., Monga S.P. Wnt/beta-catenin signaling in hepatic organogenesis. Organogenesis. 2008;4:92–99. doi: 10.4161/org.4.2.5855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Paranjpe S., Bowen W.C., Bell A.W., Nejak-Bowen K., Luo J.H., Michalopoulos G.K. Cell cycle effects resulting from inhibition of hepatocyte growth factor and its receptor c-Met in regenerating rat livers by RNA interference. Hepatology. 2007;45:1471–1477. doi: 10.1002/hep.21570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rambhatla L., Chiu C.P., Kundu P., Peng Y., Carpenter M.K. Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant. 2003;12:1–11. doi: 10.3727/000000003783985179. [DOI] [PubMed] [Google Scholar]
  48. Reiter J.F., Alexander J., Rodaway A., Yelon D., Patient R., Holder N., Stainier D.Y. Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev. 1999;13:2983–2995. doi: 10.1101/gad.13.22.2983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Reiter J.F., Kikuchi Y., Stainier D.Y. Multiple roles for Gata5 in zebrafish endoderm formation. Development. 2001;128:125–135. doi: 10.1242/dev.128.1.125. [DOI] [PubMed] [Google Scholar]
  50. Rossi J.M., Dunn N.R., Hogan B.L., Zaret K.S. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev. 2001;15:1998–2009. doi: 10.1101/gad.904601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Saito K., Yoshikawa M., Ouji Y., Moriya K., Nishiofuku M., Ueda S., Hayashi N., Ishizaka S., Fukui H. Promoted differentiation of cynomolgus monkey ES cells into hepatocyte-like cells by co-culture with mouse fetal liver-derived cells. World J Gastroenterol. 2006;12:6818–6827. doi: 10.3748/wjg.v12.i42.6818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Schmidt C., Bladt F., Goedecke S., Brinkmann V., Zschiesche W., Sharpe M., Gherardi E., Birchmeier C. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995;373:699–702. doi: 10.1038/373699a0. [DOI] [PubMed] [Google Scholar]
  53. Schultheiss T.M., Burch J.B., Lassar A.B. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev. 1997;11:451–462. doi: 10.1101/gad.11.4.451. [DOI] [PubMed] [Google Scholar]
  54. Shen M.M. Nodal signaling: developmental roles and regulation. Development. 2007;134:1023–1034. doi: 10.1242/dev.000166. [DOI] [PubMed] [Google Scholar]
  55. Shiota G., Kawasaki H. Hepatocyte growth factor in transgenic mice. Int J Exp Pathol. 1998;79:267–277. doi: 10.1046/j.1365-2613.1998.730403.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Shiraki N., Umeda K., Sakashita N., Takeya M., Kume K., Kume S. Differentiation of mouse and human embryonic stem cells into hepatic lineages. Genes Cells. 2008;13:731–746. doi: 10.1111/j.1365-2443.2008.01201.x. [DOI] [PubMed] [Google Scholar]
  57. Touboul T., Hannan N.R., Corbineau S., Martinez A., Martinet C., Branchereau S., Mainot S., Strick-Marchand H., Pedersen R., Di Santo J., et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology. 2010;51:1754–1765. doi: 10.1002/hep.23506. [DOI] [PubMed] [Google Scholar]
  58. Tremblay K.D., Zaret K.S. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol. 2005;280:87–99. doi: 10.1016/j.ydbio.2005.01.003. [DOI] [PubMed] [Google Scholar]
  59. Tsukada H., Takada T., Shiomi H., Torii R., Tani T. Acidic fibroblast growth factor promotes hepatic differentiation of monkey embryonic stem cells. In Vitro Cell Dev Biol Anim. 2006;42:83–88. doi: 10.1290/0506039.1. [DOI] [PubMed] [Google Scholar]
  60. Uehara Y., Minowa O., Mori C., Shiota K., Kuno J., Noda T., Kitamura N. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995;373:702–705. doi: 10.1038/373702a0. [DOI] [PubMed] [Google Scholar]
  61. Vivekanandan P., Singh O.V. Molecular methods in the diagnosis and management of chronic hepatitis B. Expert Rev Mol Diagn. 2010;10:921–935. doi: 10.1586/erm.10.75. [DOI] [PubMed] [Google Scholar]
  62. Wallingford J.B. Vertebrate gastrulation: polarity genes control the matrix. Curr Biol. 2005;15:R414–R416. doi: 10.1016/j.cub.2005.05.029. [DOI] [PubMed] [Google Scholar]
  63. Watt A.J., Garrison W.D., Duncan S.A. HNF4: a central regulator of hepatocyte differentiation and function. Hepatology. 2003;37:1249–1253. doi: 10.1053/jhep.2003.50273. [DOI] [PubMed] [Google Scholar]
  64. Zamule S.M., Coslo D.M., Chen F., Omiecinski C.J. Differentiation of human embryonic stem cells along a hepatic lineage. Chem Biol Interact. 2011;190:62–72. doi: 10.1016/j.cbi.2011.01.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Zaret K.S. Liver specification and early morphogenesis. Mech Dev. 2000;92:83–88. doi: 10.1016/S0925-4773(99)00326-3. [DOI] [PubMed] [Google Scholar]
  66. Zaret K.S. Hepatocyte differentiation: from the endoderm and beyond. Curr Opin Genet Dev. 2001;11:568–574. doi: 10.1016/S0959-437X(00)00234-3. [DOI] [PubMed] [Google Scholar]
  67. Zhang W., Yatskievych T.A., Baker R.K., Antin P.B. Regulation of Hex gene expression and initial stages of avian hepatogenesis by Bmp and Fgf signaling. Dev Biol. 2004;268:312–326. doi: 10.1016/j.ydbio.2004.01.019. [DOI] [PubMed] [Google Scholar]
  68. Zhao R., Watt A.J., Li J., Luebke-Wheeler J., Morrisey E.E., Duncan S.A. GATA6 is essential for embryonic development of the liver but dispensable for early heart formation. Mol Cell Biol. 2005;25:2622–2631. doi: 10.1128/MCB.25.7.2622-2631.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Zhou M., Li P., Tan L., Qu S., Ying Q.L., Song H. Differentiation of mouse embryonic stem cells into hepatocytes induced by a combination of cytokines and sodium butyrate. J Cell Biochem. 2010;109:606–614. doi: 10.1002/jcb.22442. [DOI] [PubMed] [Google Scholar]
  70. Zhou Q.J., Xiang L.X., Shao J.Z., Hu R.Z., Lu Y.L., Yao H., Dai L.C. In vitro differentiation of hepatic progenitor cells from mouse embryonic stem cells induced by sodium butyrate. J Cell Biochem. 2007;100:29–42. doi: 10.1002/jcb.20970. [DOI] [PubMed] [Google Scholar]
  71. Zhou X., Sasaki H., Lowe L., Hogan B.L., Kuehn M.R. Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature. 1993;361:543–547. doi: 10.1038/361543a0. [DOI] [PubMed] [Google Scholar]
  72. Zorn A.M., Wells J.M. Molecular basis of vertebrate endoderm development. Int Rev Cytol. 2007;259:49–111. doi: 10.1016/S0074-7696(06)59002-3. [DOI] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES