Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2010 Jul 7;1(6):537–551. doi: 10.1007/s13238-010-0069-z

Insulin: a small protein with a long journey

Qingxin Hua 1,
PMCID: PMC4875317  PMID: 21204007

Abstract

Insulin is a hormone that is essential for regulating energy storage and glucose metabolism in the body. Insulin in liver, muscle, and fat tissues stimulates the cell to take up glucose from blood and store it as glycogen in liver and muscle. Failure of insulin control causes diabetes mellitus (DM). Insulin is the unique medicine to treat some forms of DM. The population of diabetics has dramatically increased over the past two decades, due to high absorption of carbohydrates (or fats and proteins), lack of physical exercise, and development of new diagnostic techniques. At present, the two largest developing countries (India and China) and the largest developed country (United States) represent the top three countries in terms of diabetic population. Insulin is a small protein, but contains almost all structural features typical of proteins: α-helix, β-sheet, β-turn, high order assembly, allosteric T→R-transition, and conformational changes in amyloidal fibrillation. More than ten years’ efforts on studying insulin disulfide intermediates by NMR have enabled us to decipher the whole picture of insulin folding coupled to disulfide pairing, especially at the initial stage that forms the nascent peptide. Two structural switches are also known to regulate insulin binding to receptors and progress has been made to identify the residues involved in binding. However, resolving the complex structure of insulin and its receptor remains a challenge in insulin research. Nevertheless, the accumulated knowledge of insulin structure has allowed us to specifically design a new ultra-stable and active single-chain insulin analog (SCI-57), and provides a novel way to design super-stable, fast-acting and cheaper insulin formulations for DM patients. Continuing this long journey of insulin study will benefit basic research in proteins and in pharmaceutical therapy.

Keywords: insulin, diabetes, receptor binding, folding, disulfide pairing, NMR

References

  1. Adams T.E., Epa V.C., Garrett T.P.J., Ward C.W. Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci. 2000;57:1050–1093. doi: 10.1007/PL00000744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ahmad A., Millett I.S., Doniach S., Uversky V.N., Fink A.L. Partially folded intermediates in insulin fibrillation. Biochemistry. 2003;42:11404–11416. doi: 10.1021/bi034868o. [DOI] [PubMed] [Google Scholar]
  3. Anfinsen C.B. Principles that govern the folding of protein chains. Science. 1973;181:223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
  4. Badger J., Harris M.R., Reynolds C.D., Evans A.C., Dodson E.J., Dodson G.G., North A.C. Structure of the pig insulin dimer in the cubic crystal. Acta Crystallogr B. 1991;47:127–136. doi: 10.1107/s0108768190009570. [DOI] [PubMed] [Google Scholar]
  5. Baker E.N., Blundell T.L., Cutfield J.F., Cutfield S.M., Dodson E.J., Dodson G.G., Hodgkin D.M., Hubbard R.E., Isaacs N.W., Reynolds C.D., et al. The structure of 2Zn pig insulin crystals at 1.5 A resolution. Philos Trans R Soc Lond B Biol Sci. 1988;319:369–456. doi: 10.1098/rstb.1988.0058. [DOI] [PubMed] [Google Scholar]
  6. Bao S.J., Xie D.L., Zhang J.P., Chang W.R., Liang D.C. Crystal structure of desheptapeptide(B24–B30)insulin at 1.6 A resolution: implications for receptor binding. Proc Natl Acad Sci U S A. 1997;94:2975–2980. doi: 10.1073/pnas.94.7.2975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bentley G., Dodson E., Dodson G., Hodgkin D., Mercola D. Structure of insulin in 4-zinc insulin. Nature. 1976;261:166–168. doi: 10.1038/261166a0. [DOI] [PubMed] [Google Scholar]
  8. Blundell T.L., Cutfield J.F., Cutfield S.M., Dodson E.J., Dodson G. G., Hodgkin D.C., Mercola D.A., Vijayan M. Atomic positions in rhombohedral 2-zinc insulin crystals. Nature. 1971;231:506–511. doi: 10.1038/231506a0. [DOI] [PubMed] [Google Scholar]
  9. Brange J. Galenics of insulin: the physico-chemical and pharmaceutical aspects of insulin and insulin preparations. Berlin: Higher Education Press and Springer-Verlag; 1987. [Google Scholar]
  10. Brange J., Andersen L., Laursen E.D., Meyn G., Rasmussen E. Toward understanding insulin fibrillation. J Pharm Sci. 1997;86:517–525. doi: 10.1021/js960297s. [DOI] [PubMed] [Google Scholar]
  11. Brange J., Dodson G.G., Edwards D.J., Holden P.H., Whittingham J.L. A model of insulin fibrils derived from the x-ray crystal structure of a monomeric insulin (despentapeptide insulin) Proteins. 1997;27:507–516. [PubMed] [Google Scholar]
  12. Brange J., Langkjaer L. Insulin formulation and delivery. Pharm Biotechnol. 1997;10:343–409. doi: 10.1007/0-306-46803-4_13. [DOI] [PubMed] [Google Scholar]
  13. Bucciantini M., Giannoni E., Chiti F., Baroni F., Formigli L., Zurdo J., Taddei N., Ramponi G., Dobson C.M., Stefani M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature. 2002;416:507–511. doi: 10.1038/416507a. [DOI] [PubMed] [Google Scholar]
  14. Chothia C., Lesk A.M., Dodson G.G., Hodgkin D.C. Transmission of conformational change in insulin. Nature. 1983;302:500–505. doi: 10.1038/302500a0. [DOI] [PubMed] [Google Scholar]
  15. Ciszak E., Smith G.D. Crystallographic evidence for dual coordination around zinc in the T3R3 human insulin hexamer. Biochemistry. 1994;33:1512–1517. doi: 10.1021/bi00172a030. [DOI] [PubMed] [Google Scholar]
  16. Cohen F.E. Protein misfolding and prion diseases. J Mol Biol. 1999;293:313–320. doi: 10.1006/jmbi.1999.2990. [DOI] [PubMed] [Google Scholar]
  17. Colombo C., Porzio O., Liu M., Massa O., Vasta M., Salardi S., Beccaria L., Monciotti C., Toni S., Pedersen O., the Early Onset Diabetes Study Group of the Italian Society of Pediatric EndocrinologyDiabetes et al. Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus. J Clin Invest. 2008;118:2148–2156. doi: 10.1172/JCI33777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Cooke R.M., Harvey T.S., Campbell I.D. Solution structure of human insulin-like growth factor 1: a nuclear magnetic resonance and restrained molecular dynamics study. Biochemistry. 1991;30:5484–5491. doi: 10.1021/bi00236a022. [DOI] [PubMed] [Google Scholar]
  19. Dai Y., Tang J.G. Characteristic, activity and conformational studies of [A6-Ser, A11-Ser]-insulin. Biochim Biophys Acta. 1996;1296:63–68. doi: 10.1016/0167-4838(96)00054-4. [DOI] [PubMed] [Google Scholar]
  20. De Meyts P. The structural basis of insulin and insulin-like growth factor-I receptor binding and negative co-operativity, and its relevance to mitogenic versus metabolic signalling. Diabetologia. 1994;37:S135–S148. doi: 10.1007/BF00400837. [DOI] [PubMed] [Google Scholar]
  21. De Meyts P., Whittaker J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov. 2002;1:769–783. doi: 10.1038/nrd917. [DOI] [PubMed] [Google Scholar]
  22. De Wolf E., Gill R., Geddes S., Pitts J., Wollmer A., Grötzinger J. Solution structure of a mini IGF-1. Protein Sci. 1996;5:2193–2202. doi: 10.1002/pro.5560051106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Derewenda U., Derewenda Z., Dodson E.J., Dodson G.G., Bing X., Markussen J. X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. A completely inactive analogue. J Mol Biol. 1991;220:425–433. doi: 10.1016/0022-2836(91)90022-x. [DOI] [PubMed] [Google Scholar]
  24. Derewenda U., Derewenda Z., Dodson E.J., Dodson G.G., Reynolds C.D., Smith G.D., Sparks C., Swenson D. Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. Nature. 1989;338:594–596. doi: 10.1038/338594a0. [DOI] [PubMed] [Google Scholar]
  25. Dobson C.M. Protein misfolding, evolution and disease. Trends Biochem Sci. 1999;24:329–332. doi: 10.1016/s0968-0004(99)01445-0. [DOI] [PubMed] [Google Scholar]
  26. Dodson G., Steiner D. The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol. 1998;8:189–194. doi: 10.1016/s0959-440x(98)80037-7. [DOI] [PubMed] [Google Scholar]
  27. Du Y.C., Jiang R.Q., Tsou C.L. Conditions for successful resynthesis of insulin from its glycyl and phenylalanyl chains. Sci Sin. 1965;14:229–236. [Google Scholar]
  28. Duret L., Guex N., Peitsch M.C., Bairoch A. New insulin-like proteins with atypical disulfide bond pattern characterized in Caenorhabditis elegans by comparative sequence analysis and homology modeling. Genome Res. 1998;8:348–353. doi: 10.1101/gr.8.4.348. [DOI] [PubMed] [Google Scholar]
  29. Edghill E.L., Flanagan S.E., Patch A.M., Boustred C., Parrish A., Shields B., Shepherd M.H., Hussain K., Kapoor R.R., Malecki M., the Neonatal Diabetes International Collaborative Group et al. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes. 2008;57:1034–1042. doi: 10.2337/db07-1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Eigenbrot C., Randal M., Quan C., Burnier J., O”Connell L., Rinderknecht E., Kossiakoff A.A. X-ray structure of human relaxin at 1.5 A. Comparison to insulin and implications for receptor binding determinants. J Mol Biol. 1991;221:15–21. [PubMed] [Google Scholar]
  31. Feng Y., Liu D., Wang J. Native-like partially folded conformations and folding process revealed in the N-terminal large fragments of staphylococcal nuclease: a study by NMR spectroscopy. J Mol Biol. 2003;330:821–837. doi: 10.1016/s0022-2836(03)00660-0. [DOI] [PubMed] [Google Scholar]
  32. Feng Y.M. Chinese work on insulin. Kerala, India: Transworld Research Network; 2010. [Google Scholar]
  33. Gill R., Verma C., Wallach B., Ursø B., Pitts J., Wollmer A., De Meyts P., Wood S. Modelling of the disulphide-swapped isomer of human insulin-like growth factor-1: implications for receptor binding. Protein Eng. 1999;12:297–303. doi: 10.1093/protein/12.4.297. [DOI] [PubMed] [Google Scholar]
  34. Guo Z.Y., Feng Y.M. Effects of cysteine to serine substitutions in the two inter-chain disulfide bonds of insulin. Biol Chem. 2001;382:443–448. doi: 10.1515/BC.2001.054. [DOI] [PubMed] [Google Scholar]
  35. Guo Z.Y., Qiao Z.S., Feng Y.M. The in vitro oxidative folding of the insulin superfamily. Antioxid Redox Signal. 2008;10:127–139. doi: 10.1089/ars.2007.1860. [DOI] [PubMed] [Google Scholar]
  36. Hober S., Uhlén M., Nilsson B. Disulfide exchange folding of disulfide mutants of insulin-like growth factor I in vitro. Biochemistry. 1997;36:4616–4622. doi: 10.1021/bi9611265. [DOI] [PubMed] [Google Scholar]
  37. Hua Q.X. Insight into folding, binding and stability of insulin by NMR. Prog Biochem Biophys. 2004;31:1–26. [Google Scholar]
  38. Hua Q.X., Chu Y.C., Jia W., Phillips N.F., Wang R.Y., Katsoyannis P.G., Weiss M.A. Mechanism of insulin chain combination. Asymmetric roles of A-chain alpha-helices in disulfide pairing. J Biol Chem. 2002;277:43443–43453. doi: 10.1074/jbc.M206107200. [DOI] [PubMed] [Google Scholar]
  39. Hua Q.X., Gozani S.N., Chance R.E., Hoffmann J.A., Frank B.H., Weiss M.A. Structure of a protein in a kinetic trap. Nat Struct Biol. 1995;2:129–138. doi: 10.1038/nsb0295-129. [DOI] [PubMed] [Google Scholar]
  40. Hua Q.X., Hu S.Q., Frank B.H., Jia W., Chu Y.C., Wang S.H., Burke G.T., Katsoyannis P.G., Weiss M.A. Mapping the functional surface of insulin by design: structure and function of a novel A-chain analogue. J Mol Biol. 1996;264:390–403. doi: 10.1006/jmbi.1996.0648. [DOI] [PubMed] [Google Scholar]
  41. Hua Q.X., Jia W., Frank B.H., Phillips N.F., Weiss M.A. A protein caught in a kinetic trap: structures and stabilities of insulin disulfide isomers. Biochemistry. 2002;41:14700–14715. doi: 10.1021/bi0202981. [DOI] [PubMed] [Google Scholar]
  42. Hua Q.X., Kochoyan M., Weiss M.A. Structure and dynamics of des-pentapeptide-insulin in solution: the moltenglobule hypothesis. Proc Natl Acad Sci U S A. 1992;89:2379–2383. doi: 10.1073/pnas.89.6.2379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Hua Q.X., Liu M., Hu S.Q., Jia W., Arvan P., Weiss M.A. A conserved histidine in insulin is required for the foldability of human proinsulin: structure and function of an ALAB5 analog. J Biol Chem. 2006;281:24889–24899. doi: 10.1074/jbc.M602617200. [DOI] [PubMed] [Google Scholar]
  44. Hua Q.X., Mayer J.P., Jia W., Zhang J., Weiss M.A. The folding nucleus of the insulin superfamily: a flexible peptide model foreshadows the native state. J Biol Chem. 2006;281:28131–28142. doi: 10.1074/jbc.M602616200. [DOI] [PubMed] [Google Scholar]
  45. Hua Q.X., Nakagawa S.H., Hu S.Q., Jia W., Wang S., Weiss M.A. Toward the active conformation of insulin: stereospecific modulation of a structural switch in the B-chain. J Biol Chem. 2006;281:24900–24909. doi: 10.1074/jbc.M602691200. [DOI] [PubMed] [Google Scholar]
  46. Hua Q.X., Nakagawa S.H., Jia W., Hu S.Q., Chu Y.C., Katsoyannis P.G., Weiss M.A. Hierarchical protein folding: asymmetric unfolding of an insulin analogue lacking the A7–B7 interchain disulfide bridge. Biochemistry. 2001;40:12299–12311. doi: 10.1021/bi011021o. [DOI] [PubMed] [Google Scholar]
  47. Hua Q.X., Nakagawa S.H., Jia W., Huang K., Phillips N.B., Hu S. Q., Weiss M.A. Design of an active ultrastable single-chain insulin analog: synthesis, structure, and therapeutic implications. J Biol Chem. 2008;283:14703–14716. doi: 10.1074/jbc.M800313200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Hua Q.X., Nakagawa S.H., Wilken J., Ramos R.R., Jia W., Bass J., Weiss M.A. A divergent INS protein in Caenorhabditis elegans structurally resembles human insulin and activates the human insulin receptor. Genes Dev. 2003;17:826–831. doi: 10.1101/gad.1058003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Hua Q.X., Narhi L., Jia W., Arakawa T., Rosenfeld R., Hawkins N., Miller J.A., Weiss M.A. Native and non-native structure in a protein-folding intermediate: spectroscopic studies of partially reduced IGF-I and an engineered alanine model. J Mol Biol. 1996;259:297–313. doi: 10.1006/jmbi.1996.0320. [DOI] [PubMed] [Google Scholar]
  50. Hua Q.X., Shoelson S.E., Kochoyan M., Weiss M.A. Receptor binding redefined by a structural switch in a mutant human insulin. Nature. 1991;354:238–241. doi: 10.1038/354238a0. [DOI] [PubMed] [Google Scholar]
  51. Hua Q.X., Shoelson S.E., Weiss M.A. Nonlocal structural perturbations in a mutant human insulin: sequential resonance assignment and 13C-isotope-aided 2D-NMR studies of [PheB24→Gly]insulin with implications for receptor recognition. Biochemistry. 1992;31:11940–11951. doi: 10.1021/bi00162a037. [DOI] [PubMed] [Google Scholar]
  52. Hua Q.X., Weiss M.A. Comparative 2D NMR studies of human insulin and des-pentapeptide insulin: sequential resonance assignment and implications for protein dynamics and receptor recognition. Biochemistry. 1991;30:5505–5515. doi: 10.1021/bi00236a025. [DOI] [PubMed] [Google Scholar]
  53. Hua Q.X., Weiss M.A. Mechanism of insulin fibrillation: the structure of insulin under amyloidogenic conditions resembles a protein-folding intermediate. J Biol Chem. 2004;279:21449–21460. doi: 10.1074/jbc.M314141200. [DOI] [PubMed] [Google Scholar]
  54. Hua Q.X., Xu B., Huang K., Hu S.Q., Nakagawa S., Jia W., Wang S., Whittaker J., Katsoyannis P.G., Weiss M.A. Enhancing the activity of a protein by stereospecific unfolding: conformational life cycle of insulin and its evolutionary origins. J Biol Chem. 2009;284:14586–14596. doi: 10.1074/jbc.M900085200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Huang K., Chan S.J., Hua Q.X., Chu Y.C., Wang R., Klaproth B., Jia W., Whittaker J., De Meyts P., Nakagawa S.H., et al. The A-chain of insulin contacts the insert domain of the receptor. Photo-cross-linking and nonstandard mutagenesis of the diabetes-related A3 crevice. J Biol Chem. 2007;282:35337–35349. doi: 10.1074/jbc.M705996200. [DOI] [PubMed] [Google Scholar]
  56. Huang K., Dong J., Phillips N.B., Carey P.R., Weiss M.A. Proinsulin is refractory to protein fibrillation: topological protection of a precursor protein from cross-beta assembly. J Biol Chem. 2005;280:42345–42355. doi: 10.1074/jbc.M507110200. [DOI] [PubMed] [Google Scholar]
  57. Huang K., Maiti N.C., Phillips N.B., Carey P.R., Weiss M.A. Structure-specific effects of protein topology on cross-beta assembly: studies of insulin fibrillation. Biochemistry. 2006;45:10278–10293. doi: 10.1021/bi060879g. [DOI] [PubMed] [Google Scholar]
  58. Huang K., Xu B., Hu S.Q., Chu Y.C., Hua Q.X., Qu Y., Li B., Wang S., Wang R.Y., Nakagawa S.H., et al. How insulin binds: the B-chain alpha-helix contacts the L1 beta-helix of the insulin receptor. J Mol Biol. 2004;341:529–550. doi: 10.1016/j.jmb.2004.05.023. [DOI] [PubMed] [Google Scholar]
  59. Humbel R.E. Insulin-like growth factors I and II. Eur J Biol. 1990;277:103–118. [Google Scholar]
  60. Izumi T., Yokota-Hashimoto H., Zhao S., Wang J., Halban P.A., Takeuchi T. Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes. 2003;52:409–416. doi: 10.2337/diabetes.52.2.409. [DOI] [PubMed] [Google Scholar]
  61. Jia X.Y., Guo Z.Y., Wang Y., Xu Y., Duan S.S., Feng Y.M. Peptide models of four possible insulin folding intermediates with two disulfides. Protein Sci. 2003;12:2412–2419. doi: 10.1110/ps.0389303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Katsoyannis P.G., Tometsko A. Insulin synthesis by recombination of A and B-chains: a highly efficient method. Proc Natl Acad Sci U S A. 1966;55:1554–1561. doi: 10.1073/pnas.55.6.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Kobayashi M., Ohgaku S., Iwasaki M., Maegawa H., Shigeta Y., Inouye K. Supernormal insulin: [D-PheB24]-insulin with increased affinity for insulin receptors. Biochem Biophys Res Commun. 1982;107:329–336. doi: 10.1016/0006-291x(82)91708-9. [DOI] [PubMed] [Google Scholar]
  64. Kristensen C., Kjeldsen T., Wiberg F.C., Schäffer L., Hach M., Havelund S., Bass J., Steiner D.F., Andersen A.S. Alanine scanning mutagenesis of insulin. J Biol Chem. 1997;272:12978–12983. doi: 10.1074/jbc.272.20.12978. [DOI] [PubMed] [Google Scholar]
  65. Kurapkat G., De Wolf E., Grötzinger J., Wollmer A. Inactive conformation of an insulin despite its wild-type sequence. Protein Sci. 1997;6:580–587. doi: 10.1002/pro.5560060307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Kurose T., Pashmforoush M., Yoshimasa Y., Carroll R., Schwartz G.P., Burke G.T., Katsoyannis P.G., Steiner D.F. Cross-linking of a B25 azidophenylalanine insulin derivative to the carboxyl-terminal region of the alpha-subunit of the insulin receptor. Identification of a new insulin-binding domain in the insulin receptor. J Biol Chem. 1994;269:29190–29197. [PubMed] [Google Scholar]
  67. Lawrence M.C., McKern N.M., Ward C.W. Insulin receptor structure and its implications for the IGF-1 receptor. Curr Opin Struct Biol. 2007;17:699–705. doi: 10.1016/j.sbi.2007.07.007. [DOI] [PubMed] [Google Scholar]
  68. Laws D.D., Bitter H.M., Liu K., Ball H.L., Kaneko K., Wille H., Cohen F.E., Prusiner S.B., Pines A., Wemmer D.E. Solid-state NMR studies of the secondary structure of a mutant prion protein fragment of 55 residues that induces neurodegeneration. Proc Natl Acad Sci USA. 2001;98:11686–11690. doi: 10.1073/pnas.201404298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Liang D.C., Chang W.R., Zhang J.P., Wan Z.L. The possible mechanism of binding interaction of insulin molecule with its receptor. Sci China B. 1992;35:547–557. [PubMed] [Google Scholar]
  70. Lou M., Garrett T.P., McKern N.M., Hoyne P.A., Epa V.C., Bentley J.D., Lovrecz G.O., Cosgrove L.J., Frenkel M.J., Ward C.W. The first three domains of the insulin receptor differ structurally from the insulin-like growth factor 1 receptor in the regions governing ligand specificity. Proc Natl Acad Sci U S A. 2006;103:12429–12434. doi: 10.1073/pnas.0605395103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. McKern N.M., Lawrence M.C., Streltsov V.A., Lou M.Z., Adams T. E., Lovrecz G.O., Elleman T.C., Richards K.M., Bentley J.D., Pilling P.A., et al. Structure of the insulin receptor ectodomain reveals a folded-over conformation. Nature. 2006;443:218–221. doi: 10.1038/nature05106. [DOI] [PubMed] [Google Scholar]
  72. Miller J.A., Narhi L.O., Hua Q.X., Rosenfeld R., Arakawa T., Rohde M., Prestrelski S., Lauren S., Stoney K.S., Tsai L., et al. Oxidative refolding of insulin-like growth factor 1 yields two products of similar thermodynamic stability: a bifurcating protein-folding pathway. Biochemistry. 1993;32:5203–5213. doi: 10.1021/bi00070a032. [DOI] [PubMed] [Google Scholar]
  73. Milner S.J., Carver J.A., Ballard F.J., Francis G.L. Probing the disulfide folding pathway of insulin-like growth factor-I. Biotechnol Bioeng. 1999;62:693–703. [PubMed] [Google Scholar]
  74. Molven A., Ringdal M., Nordbø A.M., Raeder H., Støy J., Lipkind G.M., Steiner D.F., Philipson L.H., Bergmann I., Aarskog D., the Norwegian Childhood Diabetes Study Group et al. Mutations in the insulin gene can cause MODY and autoantibodynegative type 1 diabetes. Diabetes. 2008;57:1131–1135. doi: 10.2337/db07-1467. [DOI] [PubMed] [Google Scholar]
  75. Murray-Rust J., McLeod A.N., Blundell T.L., Wood S.P. Structure and evolution of insulins: implications for receptor binding. Bioessays. 1992;14:325–331. doi: 10.1002/bies.950140507. [DOI] [PubMed] [Google Scholar]
  76. Nagata K., Hatanaka H., Kohda D., Kataoka H., Nagasawa H., Isogai A., Ishizaki H., Suzuki A., Inagaki F. Identification of the receptor-recognition surface of bombyxin-II, an insulin-like peptide of the silkmoth Bombyx mori: critical importance of the B-chain central part. J Mol Biol. 1995;253:759–770. doi: 10.1006/jmbi.1995.0589. [DOI] [PubMed] [Google Scholar]
  77. Nagata K., Hatanaka H., Kohda D., Kataoka H., Nagasawa H., Isogai A., Ishizaki H., Suzuki A., Inagaki F. Three-dimensional solution structure of bombyxin-II an insulin-like peptide of the silkmoth Bombyx mori: structural comparison with insulin and relaxin. J Mol Biol. 1995;253:749–758. doi: 10.1006/jmbi.1995.0588. [DOI] [PubMed] [Google Scholar]
  78. Nakagawa S.H., Tager H.S. Implications of invariant residue LeuB6 in insulin-receptor interactions. J Biol Chem. 1991;266:11502–11509. [PubMed] [Google Scholar]
  79. Nakagawa S.H., Tager H.S. Importance of aliphatic sidechain structure at positions 2 and 3 of the insulin A chain in insulinreceptor interactions. Biochemistry. 1992;31:3204–3214. doi: 10.1021/bi00127a023. [DOI] [PubMed] [Google Scholar]
  80. Nakagawa S.H., Zhao M., Hua Q.X., Hu S.Q., Wan Z.L., Jia W., Weiss M.A. Chiral mutagenesis of insulin. Foldability and function are inversely regulated by a stereospecific switch in the B-chain. Biochemistry. 2005;44:4984–4999. doi: 10.1021/bi048025o. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Nanjo K., Sanke T., Miyano M., Okai K., Sowa R., Kondo M., Nishimura S., Iwo K., Miyamura K., Given B.D., et al. Diabetes due to secretion of a structurally abnormal insulin (insulin Wakayama). Clinical and functional characteristics of [LeuA3] insulin. J Clin Invest. 1986;77:514–519. doi: 10.1172/JCI112331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Narhi L.O., Hua Q.X., Arakawa T., Fox G.M., Tsai L., Rosenfeld R., Holst P., Miller J.A., Weiss M.A. Role of native disulfide bonds in the structure and activity of insulin-like growth factor 1: genetic models of protein-folding intermediates. Biochemistry. 1993;32:5214–5221. doi: 10.1021/bi00070a033. [DOI] [PubMed] [Google Scholar]
  83. Nielsen L., Khurana R., Coats A., Frokjaer S., Brange J., Vyas S., Uversky V.N., Fink A.L. Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry. 2001;40:6036–6046. doi: 10.1021/bi002555c. [DOI] [PubMed] [Google Scholar]
  84. Oyadomari S., Koizumi A., Takeda K., Gotoh T., Akira S., Araki E., Mori M. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest. 2002;109:525–532. doi: 10.1172/JCI14550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Peking I.R.G. Insulin’s crystal structure at 2.5A resolution. Peking Rev. 1971;40:11–16. [Google Scholar]
  86. Pierce S.B., Costa M., Wisotzkey R., Devadhar S., Homburger S. A., Buchman A.R., Ferguson K.C., Heller J., Platt D.M., Pasquinelli A.A., et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev. 2001;15:672–686. doi: 10.1101/gad.867301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Pullen R.A., Lindsay D.G., Wood S.P., Tickle I.J., Blundell T.L., Wollmer A., Krail G., Brandenburg D., Zahn H., Gliemann J., et al. Receptor-binding region of insulin. Nature. 1976;259:369–373. doi: 10.1038/259369a0. [DOI] [PubMed] [Google Scholar]
  88. Qiao Z.S., Guo Z.Y., Feng Y.M. Putative disulfide-forming pathway of porcine insulin precursor during its refolding in vitro. Biochemistry. 2001;40:2662–2668. doi: 10.1021/bi001613r. [DOI] [PubMed] [Google Scholar]
  89. Qiao Z.S., Guo Z.Y., Feng Y.M. In vitro folding/unfolding of insulin/single-chain insulin. Protein Pept Lett. 2006;13:423–429. doi: 10.2174/092986606776819583. [DOI] [PubMed] [Google Scholar]
  90. Qiao Z.S., Min C.Y., Hua Q.X., Weiss M.A., Feng Y.M. In vitro refolding of human proinsulin. Kinetic intermediates, putative disulfide-forming pathway folding initiation site, and potential role of C-peptide in folding process. J Biol Chem. 2003;278:17800–17809. doi: 10.1074/jbc.M300906200. [DOI] [PubMed] [Google Scholar]
  91. Ron D. Proteotoxicity in the endoplasmic reticulum: lessons from the Akita diabetic mouse. J Clin Invest. 2002;109:443–445. doi: 10.1172/JCI15020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Sato A., Koyama S., Yamada H., Suzuki S., Tamura K., Kobayashi M., Niwa M., Yasuda T., Kyogoku Y., Kobayashi Y. Three-dimensional solution structure of a disulfide bond isomer of the human insulin-like growth factor-I. J Pept Res. 2000;56:218–230. doi: 10.1034/j.1399-3011.2000.00769.x. [DOI] [PubMed] [Google Scholar]
  93. Sato A., Nishimura S., Ohkubo T., Kyogoku Y., Koyama S., Kobayashi M., Yasuda T., Kobayashi Y. Three-dimensional structure of human insulin-like growth factor-I (IGF-I) determined by 1H-NMR and distance geometry. Int J Pept Protein Res. 1993;41:433–440. doi: 10.1111/j.1399-3011.1993.tb00462.x. [DOI] [PubMed] [Google Scholar]
  94. Schäffer L. A model for insulin binding to the insulin receptor. Eur J Biochem. 1994;221:1127–1132. doi: 10.1111/j.1432-1033.1994.tb18833.x. [DOI] [PubMed] [Google Scholar]
  95. Shoelson S.E., Lu Z.X., Parlautan L., Lynch C.S., Weiss M.A. Mutations at the dimer, hexamer, and receptor-binding surfaces of insulin independently affect insulin-insulin and insulin-receptor interactions. Biochemistry. 1992;31:1757–1767. doi: 10.1021/bi00121a025. [DOI] [PubMed] [Google Scholar]
  96. Sieber P.S., Eisler K., Kamber B., Riniker B., Rittel W., Märki F., de Gasparo M. Synthesis and biological activity of two disulphide bond isomers of human insulin: [A7–A11, A6–B7-cystine]- and [A6–A7,A11–B7-cystine]insulin (human) Hoppe Seylers Z Physiol Chem. 1978;359:113–123. doi: 10.1515/bchm.1978.359.1.113. [DOI] [PubMed] [Google Scholar]
  97. Steiner D.F. Evidence for a precursor in the biosynthesis of insulin. Trans N Y Acad Sci. 1967;30:60–68. doi: 10.1111/j.2164-0947.1967.tb02452.x. [DOI] [PubMed] [Google Scholar]
  98. Steiner D.F. The proprotein convertases. Curr Opin Chem Biol. 1998;2:31–39. doi: 10.1016/s1367-5931(98)80033-1. [DOI] [PubMed] [Google Scholar]
  99. Steiner D.F., Tager H.S., Chan S.J., Nanjo K., Sanke T., Rubenstein A.H. Lessons learned from molecular biology of insulin-gene mutations. Diabetes Care. 1990;13:600–609. doi: 10.2337/diacare.13.6.600. [DOI] [PubMed] [Google Scholar]
  100. Støy J., Edghill E.L., Flanagan S.E., Ye H., Paz V.P., Pluzhnikov A., Below J.E., Hayes M.G., Cox N.J., Lipkind G.M., the Neonatal Diabetes International Collaborative Group et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A. 2007;104:15040–15044. doi: 10.1073/pnas.0707291104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Tang J.G., Tsou C.L. The insulin A and B-chains contain structural information for the formation of the native molecule. Studies with protein disulphide-isomerase. Biochem J. 1990;268:429–435. doi: 10.1042/bj2680429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Torres A.M., Forbes B.E., Aplin S.E., Wallace J.C., Francis G.L., Norton R.S. Solution structure of human insulin-like growth factor II. Relationship to receptor and binding protein interactions. J Mol Biol. 1995;248:385–401. doi: 10.1016/s0022-2836(95)80058-1. [DOI] [PubMed] [Google Scholar]
  103. Vajo Z., Duckworth W.C. Genetically engineered insulin analogs: diabetes in the new millenium. Pharmacol Rev. 2000;52:1–9. [PubMed] [Google Scholar]
  104. Wan Z.L., Huang K., Hu S.Q., Whittaker J., Weiss M.A. The structure of a mutant insulin uncouples receptor binding from protein allostery. An electrostatic block to the TR transition. J Biol Chem. 2008;283:21198–21210. doi: 10.1074/jbc.M800235200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Wang C.C., Tsou C.L. The insulin A and B-chains contain sufficient structural information to form the native molecule. Trends Biochem Sci. 1991;16:279–281. doi: 10.1016/0968-0004(91)90114-b. [DOI] [PubMed] [Google Scholar]
  106. Wang D.C.G., Gu X.C. A brief account on the study of the insulin crystal structure. Sin China Series C. 2010;53:13–15. doi: 10.1007/s11427-010-0019-2. [DOI] [PubMed] [Google Scholar]
  107. Wang J., Takeuchi T., Tanaka S., Kubo S.K., Kayo T., Lu D., Takata K., Koizumi A., Izumi T. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J Clin Invest. 1999;103:27–37. doi: 10.1172/JCI4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Ward C., Lawrence M.C., Streltsov V., Garrett T., McKern N., Lou M.Z., Lovrecz G., Adams T. Structural insights into ligand-induced activation of the insulin receptor. Acta Physiol (Oxf) 2008;192:3–9. doi: 10.1111/j.1748-1716.2007.01781.x. [DOI] [PubMed] [Google Scholar]
  109. Waugh D.F. The properties of protein fibers produced. Reversibly from soluble protein molecules. Am J Physiol. 1941;133:484–P485. [Google Scholar]
  110. Waugh D.F. The linkage of corpuscular protein molecules. I. A fibrous modification on insulin. J Am Chem Soc. 1944;66:663. [Google Scholar]
  111. Waugh D.F. Fed Proc. 1946;5:111. [PubMed] [Google Scholar]
  112. Waugh D.F. A fibrous modification of insulin. I. The heat precipitate of insulin. J Am Chem Soc. 1946;68:247–250. [Google Scholar]
  113. Weiss M.A., Hua Q.X., Jia W., Chu Y.C., Wang R.Y., Katsoyannis P.G. Hierarchical protein “un-design”: insulin’s intrachain disulfide bridge tethers a recognition alpha-helix. Biochemistry. 2000;39:15429–15440. doi: 10.1021/bi001905s. [DOI] [PubMed] [Google Scholar]
  114. Weiss M.A., Hua Q.X., Lynch C.S., Frank B.H., Shoelson S.E. Heteronuclear 2D NMR studies of an engineered insulin monomer: assignment and characterization of the receptor-binding surface by selective 2H and 13C labeling with application to protein design. Biochemistry. 1991;30:7373–7389. doi: 10.1021/bi00244a004. [DOI] [PubMed] [Google Scholar]
  115. Wuthrich K. NMR of Proteins and Nucleic Acids. New York, NY: Higher Education Press and Springer-Verlag; 1986. [Google Scholar]
  116. Xu B., Hu S.Q., Chu Y.C., Huang K., Nakagawa S.H., Whittaker J., Katsoyannis P.G., Weiss M.A. Diabetes-associated mutations in insulin: consecutive residues in the B-chain contact distinct domains of the insulin receptor. Biochemistry. 2004;43:8356–8372. doi: 10.1021/bi0497796. [DOI] [PubMed] [Google Scholar]
  117. Xu B., Hu S.Q., Chu Y.C., Wang S., Wang R.Y., Nakagawa S.H., Katsoyannis P.G., Weiss M.A. Diabetes-associated mutations in insulin identify invariant receptor contacts. Diabetes. 2004;53:1599–1602. doi: 10.2337/diabetes.53.6.1599. [DOI] [PubMed] [Google Scholar]
  118. Xu B., Huang K., Chu Y.C., Hu S.Q., Nakagawa S., Wang S., Wang R.Y., Whittaker J., Katsoyannis P.G., Weiss M.A. Decoding the cryptic active conformation of a protein by synthetic photoscanning: insulin inserts a detachable arm between receptor domains. J Biol Chem. 2009;284:14597–14608. doi: 10.1074/jbc.M900087200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Yan H., Guo Z.Y., Gong X.W., Xi D., Feng Y.M. A peptide model of insulin folding intermediate with one disulfide. Protein Sci. 2003;12:768–775. doi: 10.1110/ps.0237203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Yoshioka M., Kayo T., Ikeda T., Koizumi A. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes. 1997;46:887–894. doi: 10.2337/diab.46.5.887. [DOI] [PubMed] [Google Scholar]
  121. Zahn H., Schmidt G. Synthesis of an insulin B-chain disulfide polymer. Tetrahedron Lett. 1967;50:5095–5098. doi: 10.1016/s0040-4039(01)89923-8. [DOI] [PubMed] [Google Scholar]
  122. Zeng Z.H., Liu Y.S., Jin L., Zhang Y., Havelund S., Markussen J., Wang D.C. Conformational correlation and coupled motion between residue A21 and B25 side chain observed in crystal structures of insulin mutants at position A21. Biochim Biophys Acta. 2000;1479:225–236. doi: 10.1016/s0167-4838(00)00020-0. [DOI] [PubMed] [Google Scholar]
  123. Zhang Y.S. The first protein ever synthesized in vitro. Sin China Series C. 2010;53:16–18. doi: 10.1007/s11427-010-0008-5. [DOI] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES