Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2010 Jul 7;1(6):563–572. doi: 10.1007/s13238-010-0076-0

Surface-bound myeloperoxidase is a ligand for recognition of late apoptotic neutrophils by human lung surfactant proteins A and D

Anne Jäkel 1,3, Howard Clark 2,3, Kenneth B M Reid 3, Robert B Sim 1,3,
PMCID: PMC4875323  PMID: 21204009

Abstract

Surfactant proteins A (SP-A) and D (SP-D), both members of the collectin family, play a well established role in apoptotic cell recognition and clearance. Recent in vitro data show that SP-A and SP-D interact with apoptotic neutrophils in a distinct manner. SP-A and SP-D bind in a Ca2+-dependent manner to viable and early apoptotic neutrophils whereas the much greater interaction with late apoptotic neutrophils is Ca2+-independent. Cell surface molecules on the apoptotic target cells responsible for these interactions had not been identified and this study was done to find candidate target molecules. Myeloperoxidase (MPO), a specific intracellular defense molecule of neutrophils that becomes exposed on the outside of the cell upon apoptosis, was identified by affinity purification, mass-spectrometry and western blotting as a novel binding molecule for SP-A and SP-D. To confirm its role in recognition, it was shown that purified immobilised MPO binds SP-A and SP-D, and that MPO is surface-exposed on late apoptotic neutrophils. SP-A and SP-D inhibit binding of an anti-MPO monoclonal Ab to late apoptotic cells. Fluorescence microscopy confirmed that anti-MPO mAb and SP-A/SP-D colocalise on late apoptotic neutrophils. Desmoplakin was identified as a further potential ligand for SP-A, and neutrophil defensin as a target for both proteins.

Keywords: SP-A, SP-D, myeloperoxidase, neutrophils, flow cytometry, mass spectrometry

References

  1. Audrain M.A., Baranger T.A., Moguilevski N., Martin S.J., Devys A., Lockwood C.M., Muller J.Y., Esnault V.L. Antinative and recombinant myeloperoxidase monoclonals and human autoantibodies. Clin Exp Immunol. 1997;107:127–134. doi: 10.1046/j.1365-2249.1997.d01-895.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cox G., Crossley J., Xing Z. Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am J Respir Cell Mol Biol. 1995;12:232–237. doi: 10.1165/ajrcmb.12.2.7865221. [DOI] [PubMed] [Google Scholar]
  3. Fadok V.A., Bratton D.L., Henson P.M. Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences. J Clin Invest. 2001;108:957–962. doi: 10.1172/JCI200114122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fadok V.A., Chimini G. The phagocytosis of apoptotic cells. Semin Immunol. 2001;13:365–372. doi: 10.1006/smim.2001.0333. [DOI] [PubMed] [Google Scholar]
  5. Fadok V.A., Henson P.M. Apoptosis: giving phosphatidylserine recognition an assist-with a twist. Curr Biol. 2003;13:R655–R657. doi: 10.1016/S0960-9822(03)00575-X. [DOI] [PubMed] [Google Scholar]
  6. Fadok V.A., Voelker D.R., Campbell P.A., Cohen J.J., Bratton D.L., Henson P.M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992;148:2207–2216. [PubMed] [Google Scholar]
  7. Flemmig J., Lessig J., Reibetanz U., Dautel P., Arnhold J. Non-vital polymorphonuclear leukocytes express myeloperoxidase on their surface. Cell Physiol Biochem. 2008;21:287–296. doi: 10.1159/000129387. [DOI] [PubMed] [Google Scholar]
  8. Gaynor C.D., McCormack F.X., Voelker D.R., McGowan S.E., Schlesinger L.S. Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J Immunol. 1995;155:5343–5351. [PubMed] [Google Scholar]
  9. Haagsman H.P., Elfring R.H., van Buel B.L., Voorhout W.F. The lung lectin surfactant protein A aggregates phospholipid vesicles via a novel mechanism. Biochem J. 1991;275:273–276. doi: 10.1042/bj2750273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haagsman H.P., Sargeant T., Hauschka P.V., Benson B.J., Hawgood S. Binding of calcium to SP-A, a surfactant-associated protein. Biochemistry. 1990;29:8894–8900. doi: 10.1021/bi00490a003. [DOI] [PubMed] [Google Scholar]
  11. Hartshorn K.L., White M.R., Tecle T., Holmskov U., Crouch E. C. Innate defense against influenza A virus: activity of human neutrophil defensins and interactions of defensins with surfactant protein D. J Immunol. 2006;176:6962–6972. doi: 10.4049/jimmunol.176.11.6962. [DOI] [PubMed] [Google Scholar]
  12. Haslett C. Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med. 1999;160:S5–S11. doi: 10.1164/ajrccm.160.supplement_1.4. [DOI] [PubMed] [Google Scholar]
  13. Holmskov U., Malhotra R., Sim R.B., Jensenius J.C. Collectins: collagenous C-type lectins of the innate immune defense system. Immunol Today. 1994;15:67–74. doi: 10.1016/0167-5699(94)90136-8. [DOI] [PubMed] [Google Scholar]
  14. Hussain N., Wu F., Zhu L., Thrall R.S., Kresch M.J. Neutrophil apoptosis during the development and resolution of oleic acid-induced acute lung injury in the rat. Am J Respir Cell Mol Biol. 1998;19:867–874. doi: 10.1165/ajrcmb.19.6.3118. [DOI] [PubMed] [Google Scholar]
  15. Jäkel A., Clark H., Reid K.B., Sim R.B. The human lung surfactant proteins A (SP-A) and D (SP-D) interact with apoptotic target cells by different binding mechanisms. Immunobiology. 2010;215:551–558. doi: 10.1016/j.imbio.2009.09.005. [DOI] [PubMed] [Google Scholar]
  16. Klebanoff, S.J. 1991. Myeloperoxidase: occurence and biological function; in Everse, J., Everse, E.K., Grisham, M.B. (eds): Peroxidases in chemistry and biology. Boston CRC Press; pp 1–35.
  17. Kowalczyk A.P., Bornslaeger E.A., Norvell S.M., Palka H.L., Green K.J. Desmosomes: intercellular adhesive junctions specialized for attachment of intermediate filaments. Int Rev Cytol. 1999;185:237–302. doi: 10.1016/S0074-7696(08)60153-9. [DOI] [PubMed] [Google Scholar]
  18. Kuroki Y., Akino T. Pulmonary surfactant protein A (SPA) specifically binds dipalmitoylphosphatidylcholine. J Biol Chem. 1991;266:3068–3073. [PubMed] [Google Scholar]
  19. Lessig J., Spalteholz H., Reibetanz U., Salavei P., Fischlechner M., Glander H.J., Arnhold J. Myeloperoxidase binds to non-vital spermatozoa on phosphatidylserine epitopes. Apoptosis. 2007;12:1803–1812. doi: 10.1007/s10495-007-0113-5. [DOI] [PubMed] [Google Scholar]
  20. Michelis D., Kounnas M.Z., Argraves W.S., Sanford E.D., Borchelt J.D., Wright J.R. Interaction of surfactant protein A with cellular myosin. Am J Respir Cell Mol Biol. 1994;11:692–700. doi: 10.1165/ajrcmb.11.6.7946398. [DOI] [PubMed] [Google Scholar]
  21. Ogden C.A., deCathelineau A., Hoffmann P.R., Bratton D., Ghebrehiwet B., Fadok V.A., Henson P.M. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med. 2001;194:781–795. doi: 10.1084/jem.194.6.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schagat T.L., Wofford J.A., Wright J.R. Surfactant protein A enhances alveolar macrophage phagocytosis of apoptotic neutrophils. J Immunol. 2001;166:2727–2733. doi: 10.4049/jimmunol.166.4.2727. [DOI] [PubMed] [Google Scholar]
  23. Somersan S., Bhardwaj N. Tethering and tickling: a new role for the phosphatidylserine receptor. J Cell Biol. 2001;155:501–504. doi: 10.1083/jcb.200110066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Strong P., Kishore U., Morgan C., Lopez Bernal A., Singh M., Reid K.B. A novel method of purifying lung surfactant proteins A and D from the lung lavage of alveolar proteinosis patients and from pooled amniotic fluid. J Immunol Methods. 1998;220:139–149. doi: 10.1016/S0022-1759(98)00160-4. [DOI] [PubMed] [Google Scholar]
  25. Suwabe A., Mason R.J., Voelker D.R. Calcium dependent association of surfactant protein A with pulmonary surfactant: application to simple surfactant protein A purification. Arch Biochem Biophys. 1996;327:285–291. doi: 10.1006/abbi.1996.0123. [DOI] [PubMed] [Google Scholar]
  26. Tino M.J., Wright J.R. Surfactant proteins A and D specifically stimulate directed actin-based responses in alveolar macrophages. Am J Physiol. 1999;276:L164–L174. doi: 10.1152/ajplung.1999.276.1.L164. [DOI] [PubMed] [Google Scholar]
  27. Tonks A., Pearn L., Musson M., Gilkes A., Mills K.I., Burnett A.K., Darley R.L. Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia. Leukemia. 2007;21:2495–2505. doi: 10.1038/sj.leu.2404961. [DOI] [PubMed] [Google Scholar]
  28. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969;244:4406–4412. [PubMed] [Google Scholar]
  29. Wright J.R., Youmans D.C. Degradation of surfactant lipids and surfactant protein A by alveolar macrophages in vitro. Am J Physiol. 1995;268:L772–L780. doi: 10.1152/ajplung.1995.268.5.L772. [DOI] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES