Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2011 Sep 9;2(8):656–671. doi: 10.1007/s13238-011-1082-6

Chain length-dependent cooperativity in fatty acid binding and oxidation by cytochrome P450BM3 (CYP102A1)

Benjamin Rowlatt 1, Jake A Yorke 1, Anthony J Strong 1, Christopher J C Whitehouse 1, Stephen G Bell 1, Luet-Lok Wong 1,
PMCID: PMC4875328  PMID: 21904981

Abstract

Fatty acid binding and oxidation kinetics for wild type P450BM3 (CYP102A1) from Bacillus megaterium have been found to display chain length-dependent homotropic behavior. Laurate and 13-methyl-myristate display Michaelis-Menten behavior while there are slight deviations with myristate at low ionic strengths. Palmitate shows Michaelis-Menten kinetics and hyperbolic binding behavior in 100 mmol/L phosphate, pH 7.4, but sigmoidal kinetics (with an apparent intercept) in low ionic strength buffers and at physiological phosphate concentrations. In low ionic strength buffers both the heme domain and the full-length enzyme show complex palmitate binding behavior that indicates a minimum of four fatty acid binding sites, with high cooperativity for the binding of the fourth palmitate molecule, and the full-length enzyme showing tighter palmitate binding than the heme domain. The first flavin-to-heme electron transfer is faster for laurate, myristate and palmitate in 100 mmol/L phosphate than in 50mmol/L Tris (pH 7.4), yet each substrate induces similar high-spin heme content. For palmitate in low phosphate buffer concentrations, the rate constant of the first electron transfer is much larger than kcat. The results suggest that phosphate has a specific effect in promoting the first electron transfer step, and that P450BM3 could modulate Bacillus membrane morphology and fluidity via palmitate oxidation in response to the external phosphate concentration.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-011-1082-6 and is accessible for authorized users.

Keywords: P450BM3, monooxygenase, fatty acid, cooperativity, allosteric effect, CYP102A1

Electronic supplementary material

13238_2011_1082_MOESM1_ESM.pdf (384.9KB, pdf)

Supplementary material, approximately 384 KB.

Footnotes

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-011-1082-6 and is accessible for authorized users.

References

  1. Baas B.J., Denisov I.G., Sligar S.G. Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch Biochem Biophys. 2004;430:218–228. doi: 10.1016/j.abb.2004.07.003. [DOI] [PubMed] [Google Scholar]
  2. Bell S.G., Dale A., Rees N.H., Wong L.L. A cytochrome P450 class I electron transfer system from Novosphingobium aromaticivorans. Appl Microbiol Biotechnol. 2010;86:163–175. doi: 10.1007/s00253-009-2234-y. [DOI] [PubMed] [Google Scholar]
  3. Bell S.G., Hoskins N., Whitehouse C.J.C., Wong L.-L. Design and Engineering of Cytochrome P450 Systems. Metal Ions Life Sci. 2007;3:437–476. [Google Scholar]
  4. Bell S.G., Tan A.B., Johnson E.O., Wong L.L. Selective oxidative demethylation of veratric acid to vanillic acid by CYP199A4 from Rhodopseudomonas palustris HaA2. Mol Biosyst. 2010;6:206–214. doi: 10.1039/B913487E. [DOI] [PubMed] [Google Scholar]
  5. Bell S.G., Wong L.L. P450 enzymes from the bacterium Novosphingobium aromaticivorans. Biochem Biophys Res Commun. 2007;360:666–672. doi: 10.1016/j.bbrc.2007.06.119. [DOI] [PubMed] [Google Scholar]
  6. Bell S.G., Xu F., Johnson E.O., Forward I.M., Bartlam M., Rao Z., Wong L.L. Protein recognition in ferredoxin-P450 electron transfer in the class I CYP199A2 system from Rhodopseudomonas palustris. J Biol Inorg Chem. 2010;15:315–328. doi: 10.1007/s00775-009-0604-7. [DOI] [PubMed] [Google Scholar]
  7. Brewer C.B., Peterson J.A. Single turnover kinetics of the reaction between oxycytochrome P-450cam and reduced putidaredoxin. J Biol Chem. 1988;263:791–798. [PubMed] [Google Scholar]
  8. Budde M., Maurer S.C., Schmid R.D., Urlacher V.B. Cloning, expression and characterisation of CYP102A2, a self-sufficient P450 monooxygenase from Bacillus subtilis. Appl Microbiol Biotechnol. 2004;66:180–186. doi: 10.1007/s00253-004-1719-y. [DOI] [PubMed] [Google Scholar]
  9. Carmichael A.B., Wong L.L. Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons. Eur J Biochem. 2001;268:3117–3125. doi: 10.1046/j.1432-1327.2001.02212.x. [DOI] [PubMed] [Google Scholar]
  10. Chowdhary P.K., Alemseghed M., Haines D.C. Cloning, expression and characterization of a fast self-sufficient P450: CYP102A5 from Bacillus cereus. Arch Biochem Biophys. 2007;468:32–43. doi: 10.1016/j.abb.2007.09.010. [DOI] [PubMed] [Google Scholar]
  11. Cryle, M.J., Espinoza, R.D., Smith, S.J., Matovic, N.J., and De Voss, J.J. (2006). Are branched chain fatty acids the natural substrates for P450(BM3)? Chem Commun 2353–2355. [DOI] [PubMed]
  12. Davydov D.R., Botchkareva A.E., Kumar S., He Y.Q., Halpert J.R. An electrostatically driven conformational transition is involved in the mechanisms of substrate binding and cooperativity in cytochrome P450eryF. Biochemistry. 2004;43:6475–6485. doi: 10.1021/bi036260l. [DOI] [PubMed] [Google Scholar]
  13. Davydov D.R., Halpert J.R. Allosteric P450 mechanisms: multiple binding sites, multiple conformers or both? Expert Opin Drug Metab Toxicol. 2008;4:1523–1535. doi: 10.1517/17425250802500028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Denisov I.G., Baas B.J., Grinkova Y.V., Sligar S.G. Cooperativity in cytochrome P450 3A4: linkages in substrate binding, spin state, uncoupling, and product formation. J Biol Chem. 2007;282:7066–7076. doi: 10.1074/jbc.M609589200. [DOI] [PubMed] [Google Scholar]
  15. Denisov I.G., Frank D.J., Sligar S.G. Cooperative properties of cytochromes P450. Pharmacol Ther. 2009;124:151–167. doi: 10.1016/j.pharmthera.2009.05.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dietrich M., Eiben S., Asta C., Do T.A., Pleiss J., Urlacher V.B. Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 monooxygenase from Bacillus licheniformis. Appl Microbiol Biotechnol. 2008;79:931–940. doi: 10.1007/s00253-008-1500-8. [DOI] [PubMed] [Google Scholar]
  17. Girvan H.M., Dunford A.J., Neeli R., Ekanem I.S., Waltham T.N., Joyce M.G., Leys D., Curtis R.A., Williams P., Fisher K., et al. Flavocytochrome P450 BM3 mutant W1046A is a NADH-dependent fatty acid hydroxylase: implications for the mechanism of electron transfer in the P450 BM3 dimer. Arch Biochem Biophys. 2011;507:75–85. doi: 10.1016/j.abb.2010.09.014. [DOI] [PubMed] [Google Scholar]
  18. Guengerich F.P. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol. 2001;14:611–650. doi: 10.1021/tx0002583. [DOI] [PubMed] [Google Scholar]
  19. Gustafsson M.C., Roitel O., Marshall K.R., Noble M.A., Chapman S.K., Pessegueiro A., Fulco A.J., Cheesman M.R., von Wachenfeldt C., Munro A.W. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Biochemistry. 2004;43:5474–5487. doi: 10.1021/bi035904m. [DOI] [PubMed] [Google Scholar]
  20. Haines D.C., Chen B., Tomchick D.R., Bondlela M., Hegde A., Machius M., Peterson J.A. Crystal structure of inhibitor-bound P450BM-3 reveals open conformation of substrate access channel. Biochemistry. 2008;47:3662–3670. doi: 10.1021/bi7023964. [DOI] [PubMed] [Google Scholar]
  21. Haines D.C., Sevrioukova I.F., Peterson J.A. The FMNbinding domain of cytochrome P450BM-3: resolution, reconstitution, and flavin analogue substitution. Biochemistry. 2000;39:9419–9429. doi: 10.1021/bi000255p. [DOI] [PubMed] [Google Scholar]
  22. Haines D.C., Tomchick D.R., Machius M., Peterson J.A. Pivotal role of water in the mechanism of P450BM-3. Biochemistry. 2001;40:13456–13465. doi: 10.1021/bi011197q. [DOI] [PubMed] [Google Scholar]
  23. Hasemann C.A., Kurumbail R.G., Boddupalli S.S., Peterson J.A., Deisenhofer J. Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure. 1995;3:41–62. doi: 10.1016/S0969-2126(01)00134-4. [DOI] [PubMed] [Google Scholar]
  24. Hegde A., Haines D.C., Bondlela M., Chen B., Schaffer N., Tomchick D.R., Machius M., Nguyen H., Chowdhary P.K., Stewart L., et al. Interactions of substrates at the surface of P450s can greatly enhance substrate potency. Biochemistry. 2007;46:14010–14017. doi: 10.1021/bi701667m. [DOI] [PubMed] [Google Scholar]
  25. Huang W.C., Westlake A.C., Maréchal J.D., Joyce M.G., Moody P. C., Roberts G.C. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency. J Mol Biol. 2007;373:633–651. doi: 10.1016/j.jmb.2007.08.015. [DOI] [PubMed] [Google Scholar]
  26. Ingelman-Sundberg M., Johansson I. Catalytic properties of purified forms of rabbit liver microsomal cytochrome P-450 in reconstituted phospholipid vesicles. Biochemistry. 1980;19:4004–4011. doi: 10.1021/bi00558a018. [DOI] [PubMed] [Google Scholar]
  27. Jovanovic T., Farid R., Friesner R.A., McDermott A.E. Thermal equilibrium of high- and low-spin forms of cytochrome P450 BM-3: repositioning of the substrate? J Am Chem Soc. 2005;127:13548–13552. doi: 10.1021/ja0524604. [DOI] [PubMed] [Google Scholar]
  28. Joyce M.G., Girvan H.M., Munro A.W., Leys D. A single mutation in cytochrome P450 BM3 induces the conformational rearrangement seen upon substrate binding in the wild-type enzyme. J Biol Chem. 2004;279:23287–23293. doi: 10.1074/jbc.M401717200. [DOI] [PubMed] [Google Scholar]
  29. Kitazume T., Haines D.C., Estabrook R.W., Chen B., Peterson J.A. Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3. Biochemistry. 2007;46:11892–11901. doi: 10.1021/bi701031r. [DOI] [PubMed] [Google Scholar]
  30. Lentz O., Urlacher V., Schmid R.D. Substrate specificity of native and mutated cytochrome P450 (CYP102A3) from Bacillus subtilis. J Biotechnol. 2004;108:41–49. doi: 10.1016/j.jbiotec.2003.11.001. [DOI] [PubMed] [Google Scholar]
  31. Li H., Poulos T.L. The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat Struct Biol. 1997;4:140–146. doi: 10.1038/nsb0297-140. [DOI] [PubMed] [Google Scholar]
  32. Li Q.S., Ogawa J., Schmid R.D., Shimizu S. Indole hydroxylation by bacterial cytochrome P450BM-3 and modulation of activity by cumene hydroperoxide. Biosci Biotechnol Biochem. 2005;69:293–300. doi: 10.1271/bbb.69.293. [DOI] [PubMed] [Google Scholar]
  33. Malik W.U., Jain A.K. Electrometric determination of critical micelle concentrations of soap solutions. J Electroanal Chem. 1967;14:37–41. doi: 10.1016/0022-0728(67)80131-1. [DOI] [Google Scholar]
  34. Maurer S.C., Kuhnel K., Kaysser L.A., Eiben S., Schmid R.D., Urlacher V.B. Catalytic hydroxylation in biphasic systems using CYP102A1 mutants. Adv Synth Catal. 2005;347:1090–1098. doi: 10.1002/adsc.200505044. [DOI] [Google Scholar]
  35. Maves S.A., Yeom H., McLean M.A., Sligar S.G. Decreased substrate affinity upon alteration of the substratedocking region in cytochrome P450BM-3. FEBS Lett. 1997;414:213–218. doi: 10.1016/S0014-5793(97)00999-X. [DOI] [PubMed] [Google Scholar]
  36. Mizushima S., Ishida M., Kitahara K. Chemical composition of the protoplast membrane of Bacillus megaterium. J Biochem. 1966;59:374–381. doi: 10.1093/oxfordjournals.jbchem.a128312. [DOI] [PubMed] [Google Scholar]
  37. Modi S., Primrose W.U., Lian L.Y., Roberts G.C. Effect of replacement of ferriprotoporphyrin IX in the haem domain of cytochrome P-450 BM-3 on substrate binding and catalytic activity. Biochem J. 1995;310:939–943. doi: 10.1042/bj3100939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Munro A.W., Daff S., Coggins J.R., Lindsay J.G., Chapman S. K. Probing electron transfer in flavocytochrome P-450 BM3 and its component domains. Eur J Biochem. 1996;239:403–409. doi: 10.1111/j.1432-1033.1996.0403u.x. [DOI] [PubMed] [Google Scholar]
  39. Narhi L.O., Fulco A.J. Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem. 1986;261:7160–7169. [PubMed] [Google Scholar]
  40. Narhi L.O., Fulco A.J. Identification and characterization of two functional domains in cytochrome P-450BM-3, a catalytically self-sufficient monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem. 1987;262:6683–6690. [PubMed] [Google Scholar]
  41. Neeli R., Girvan H.M., Lawrence A., Warren M.J., Leys D., Scrutton N.S., Munro A.W. The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase. FEBS Lett. 2005;579:5582–5588. doi: 10.1016/j.febslet.2005.09.023. [DOI] [PubMed] [Google Scholar]
  42. Noble M.A., Miles C.S., Chapman S.K., Lysek D.A., MacKay A.C., Reid G.A., Hanzlik R.P., Munro A.W. Roles of key active-site residues in flavocytochrome P450 BM3. Biochem J. 1999;339:371–379. doi: 10.1042/bj3390371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ost T.W., Clark J., Mowat C.G., Miles C.S., Walkinshaw M.D., Reid G.A., Chapman S.K., Daff S. Oxygen activation and electron transfer in flavocytochrome P450 BM3. J Am Chem Soc. 2003;125:15010–15020. doi: 10.1021/ja035731o. [DOI] [PubMed] [Google Scholar]
  44. Roberts A.G., Campbell A.P., Atkins W.M. The thermodynamic landscape of testosterone binding to cytochrome P450 3A4: ligand binding and spin state equilibria. Biochemistry. 2005;44:1353–1366. doi: 10.1021/bi0481390. [DOI] [PubMed] [Google Scholar]
  45. Rock D.A., Perkins B.N.S., Wahlstrom J., Jones J.P. A method for determining two substrates binding in the same active site of cytochrome P450BM3: an explanation of high energy omega product formation. Arch Biochem Biophys. 2003;416:9–16. doi: 10.1016/S0003-9861(03)00228-5. [DOI] [PubMed] [Google Scholar]
  46. Urlacher V.B., Eiben S. Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol. 2006;24:324–330. doi: 10.1016/j.tibtech.2006.05.002. [DOI] [PubMed] [Google Scholar]
  47. van Vugt-Lussenburg B.M., Damsten M.C., Maasdijk D.M., Vermeulen N.P., Commandeur J.N. Heterotropic and homotropic cooperativity by a drug-metabolising mutant of cytochrome P450 BM3. Biochem Biophys Res Commun. 2006;346:810–818. doi: 10.1016/j.bbrc.2006.05.179. [DOI] [PubMed] [Google Scholar]
  48. Whitehouse, C.J., Bell, S.G., Tufton, H.G., Kenny, R.J., Ogilvie, L.C., and Wong, L.L. (2008). Evolved CYP102A1 (P450BM3) variants oxidise a range of non-natural substrates and offer new selectivity options. Chem Commun 966–968. [DOI] [PubMed]
  49. Whitehouse C.J., Bell S.G., Yang W., Yorke J.A., Blanford C.F., Strong A.J., Morse E.J., Bartlam M., Rao Z., Wong L.L. A highly active single-mutation variant of P450BM3 (CYP102A1) Chembiochem. 2009;10:1654–1656. doi: 10.1002/cbic.200900279. [DOI] [PubMed] [Google Scholar]
  50. Whitehouse C.J., Yang W., Yorke J.A., Rowlatt B.C., Strong A.J., Blanford C.F., Bell S.G., Bartlam M., Wong L.L., Rao Z. Structural basis for the properties of two single-site proline mutants of CYP102A1 (P450BM3) Chembiochem. 2010;11:2549–2556. doi: 10.1002/cbic.201000421. [DOI] [PubMed] [Google Scholar]
  51. Whitehouse, C.J.C., Yang, W., Yorke, J.A., Tufton, H.G., Ogilvie, L.C. I., Bell, S.G., Zhou, W., Bartlam, M., Rao, Z., and Wong, L.L. (2011). Structure, electronic properties and catalytic behaviour of an activity-enhancing CYP102A1 (P450BM3) variant. Dalton Trans May 20. [Epub ahead of print] DOI: 10.1039/C1DT10098J [DOI] [PubMed]
  52. Yang W., Bell S.G., Wang H., Zhou W., Hoskins N., Dale A., Bartlam M., Wong L.L., Rao Z. Molecular characterization of a class I P450 electron transfer system from Novosphingobium aromaticivorans DSM12444. J Biol Chem. 2010;285:27372–27384. doi: 10.1074/jbc.M110.118349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Yeom H.Y., Sligar S.G. Oxygen activation by cytochrome P450BM-3: effects of mutating an active site acidic residue. Arch Biochem Biophys. 1997;337:209–216. doi: 10.1006/abbi.1996.9763. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

13238_2011_1082_MOESM1_ESM.pdf (384.9KB, pdf)

Supplementary material, approximately 384 KB.


Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES