Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2011 Sep 9;2(8):680–688. doi: 10.1007/s13238-011-1086-2

Driving efficiency in a high-throughput metabolic stability assay through a generic high-resolution accurate mass method and automated data mining

Wenqing Shui 1,2,, Song Lin 3, Allen Zhang 4, Yan Chen 4, Yingying Huang 4, Mark Sanders 4
PMCID: PMC4875332  PMID: 21904983

Abstract

Improving analytical throughput is the focus of many quantitative workflows being developed for early drug discovery. For drug candidate screening, it is common practice to use ultra-high performance liquid chromatography (U-HPLC) coupled with triple quadrupole mass spectrometry. This approach certainly results in short analytical run time; however, in assessing the true throughput, all aspects of the workflow needs to be considered, including instrument optimization and the necessity to re-run samples when information is missed. Here we describe a high-throughput metabolic stability assay with a simplified instrument set-up which significantly improves the overall assay efficiency. In addition, as the data is acquired in a non-biased manner, high information content of both the parent compound and metabolites is gathered at the same time to facilitate the decision of which compounds to proceed through the drug discovery pipeline.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-011-1086-2 and is accessible for authorized users.

Keywords: metabolic stability, high-resolution mass spectrometry, accurate mass, ultra-high performance liquid chromatography

Electronic supplementary material

13238_2011_1086_MOESM1_ESM.xls (44.5KB, xls)

Supplementary material, approximately 44.5 KB.

Footnotes

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-011-1086-2 and is accessible for authorized users.

References

  1. Castro-Perez J., Plumb R., Granger J.H., Beattie I., Joncour K., Wright A. Increasing throughput and information content for in vitro drug metabolism experiments using ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer. Rapid Commun Mass Spectrom. 2005;19:843–848. doi: 10.1002/rcm.1859. [DOI] [PubMed] [Google Scholar]
  2. Chu I., Nomeir A.A. Utility of mass spectrometry for invitro ADME assays. Curr Drug Metab. 2006;7:467–477. doi: 10.2174/138920006777697954. [DOI] [PubMed] [Google Scholar]
  3. Di L., Kerns E.H., Carter G.T. Drug-like property concepts in pharmaceutical design. Curr Pharm Des. 2009;15:2184–2194. doi: 10.2174/138161209788682479. [DOI] [PubMed] [Google Scholar]
  4. Gao H., Materne O.L., Howe D.L., Brummel C.L. Method for rapid metabolite profiling of drug candidates in fresh hepatocytes using liquid chromatography coupled with a hybrid quadrupole linear ion trap. Rapid Commun Mass Spectrom. 2007;21:3683–3693. doi: 10.1002/rcm.3257. [DOI] [PubMed] [Google Scholar]
  5. Hu Q., Noll R.J., Li H., Makarov A., Hardman M., Graham Cooks R. The Orbitrap: a new mass spectrometer. J Mass Spectrom. 2005;40:430–443. doi: 10.1002/jms.856. [DOI] [PubMed] [Google Scholar]
  6. Li A.C., Alton D., Bryant M.S., Shou W.Z. Simultaneously quantifying parent drugs and screening for metabolites in plasma pharmacokinetic samples using selected reaction monitoring information-dependent acquisition on a QTrap instrument. Rapid Commun Mass Spectrom. 2005;19:1943–1950. doi: 10.1002/rcm.2008. [DOI] [PubMed] [Google Scholar]
  7. Li A.C., Ding J., Jiang X., Denissen J. Two-injection workflow for a liquid chromatography/LTQ-Orbitrap system to complete in vivo biotransformation characterization: demonstration with buspirone metabolite identification. Rapid Commun Mass Spectrom. 2009;23:3003–3012. doi: 10.1002/rcm.4207. [DOI] [PubMed] [Google Scholar]
  8. Li A.C., Shou W.Z., Mai T.T., Jiang X.Y. Complete profiling and characterization of in vitro nefazodone metabolites using two different tandem mass spectrometric platforms. Rapid Commun Mass Spectrom. 2007;21:4001–4008. doi: 10.1002/rcm.3303. [DOI] [PubMed] [Google Scholar]
  9. Lim H.K., Chen J., Sensenhauser C., Cook K., Subrahmanyam V. Metabolite identification by data-dependent accurate mass spectrometric analysis at resolving power of 60,000 in external calibration mode using an LTQ/Orbitrap. Rapid Commun Mass Spectrom. 2007;21:1821–1832. doi: 10.1002/rcm.3024. [DOI] [PubMed] [Google Scholar]
  10. Nägele E., Fandino A.S. Simultaneous determination of metabolic stability and identification of buspirone metabolites using multiple column fast liquid chromatography time-of-flight mass spectrometry. J Chromatogr A. 2007;1156:196–200. doi: 10.1016/j.chroma.2007.01.024. [DOI] [PubMed] [Google Scholar]
  11. O’Connor D., Mortishire-Smith R., Morrison D., Davies A., Dominguez M. Ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry for robust, highthroughput quantitative analysis of an automated metabolic stability assay, with simultaneous determination of metabolic data. Rapid Commun Mass Spectrom. 2006;20:851–857. doi: 10.1002/rcm.2385. [DOI] [PubMed] [Google Scholar]
  12. Pedraglio S., Rozio M.G., Misiano P., Reali V., Dondio G., Bigogno C. New perspectives in bio-analytical techniques for preclinical characterization of a drug candidate: UPLC-MS/MS in in vitro metabolism and pharmacokinetic studies. J Pharm Biomed Anal. 2007;44:665–673. doi: 10.1016/j.jpba.2006.12.012. [DOI] [PubMed] [Google Scholar]
  13. Poon G.K., Kwei G., Wang R., Lyons K., Chen Q., Didolkar V., Hop C.E. Integrating qualitative and quantitative liquid chromatography/tandem mass spectrometric analysis to support drug discovery. Rapid Commun Mass Spectrom. 1999;13:1943–1950. doi: 10.1002/(SICI)1097-0231(19991015)13:19<1943::AID-RCM736>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  14. Rousu T., Herttuainen J., Tolonen A. Comparison of triple quadrupole, hybrid linear ion trap triple quadrupole, time-offlight and LTQ-Orbitrap mass spectrometers in drug discovery phase metabolite screening and identification in vitro—amitriptyline and verapamil as model compounds. Rapid Commun Mass Spectrom. 2010;24:939–957. doi: 10.1002/rcm.4465. [DOI] [PubMed] [Google Scholar]
  15. Ruan Q., Peterman S., Szewc M.A., Ma L., Cui D., Humphreys W. G., Zhu M. An integrated method for metabolite detection and identification using a linear ion trap/Orbitrap mass spectrometer and multiple data processing techniques: application to indinavir metabolite detection. J Mass Spectrom. 2008;43:251–261. doi: 10.1002/jms.1311. [DOI] [PubMed] [Google Scholar]
  16. Shou W.Z., Magis L., Li A.C., Naidong W., Bryant M.S. A novel approach to perform metabolite screening during the quantitative LC-MS/MS analyses of in vitro metabolic stability samples using a hybrid triple-quadrupole linear ion trap mass spectrometer. J Mass Spectrom. 2005;40:1347–1356. doi: 10.1002/jms.917. [DOI] [PubMed] [Google Scholar]
  17. Tiller P.R., Romanyshyn L.A. Liquid chromatography/tandem mass spectrometric quantification with metabolite screening as a strategy to enhance the early drug discovery process. Rapid Commun Mass Spectrom. 2002;16:1225–1231. doi: 10.1002/rcm.708. [DOI] [PubMed] [Google Scholar]
  18. Tiller P.R., Yu S., Castro-Perez J., Fillgrove K.L., Baillie T.A. High-throughput, accurate mass liquid chromatography/tandem mass spectrometry on a quadrupole time-of-flight system as a ‘first-line’ approach for metabolite identification studies. Rapid Commun Mass Spectrom. 2008;22:1053–1061. doi: 10.1002/rcm.3472. [DOI] [PubMed] [Google Scholar]
  19. Tolonen A., Turpeinen M., Pelkonen O. Liquid chromatography-mass spectrometry in in vitro drug metabolite screening. Drug Discov Today. 2009;14:120–133. doi: 10.1016/j.drudis.2008.11.002. [DOI] [PubMed] [Google Scholar]
  20. Zhang N.R., Yu S., Tiller P., Yeh S., Mahan E., Emary W.B. Quantitation of small molecules using high-resolution accurate mass spectrometers — a different approach for analysis of biological samples. Rapid Commun Mass Spectrom. 2009;23:1085–1094. doi: 10.1002/rcm.3975. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

13238_2011_1086_MOESM1_ESM.xls (44.5KB, xls)

Supplementary material, approximately 44.5 KB.


Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES