Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2011 Jun 12;2(5):369–376. doi: 10.1007/s13238-011-1051-0

Conserved arginine residue in the membrane-spanning domain of HIV-1 gp41 is required for efficient membrane fusion

Yufei Long 1,2, Fanxia Meng 1, Naoyuki Kondo 1,3, Aikichi Iwamoto 4, Zene Matsuda 1,5,
PMCID: PMC4875340  PMID: 21667332

Abstract

Despite the high mutation rate of HIV-1, the amino acid sequences of the membrane-spanning domain (MSD) of HIV-1 gp41 are well conserved. Arginine residues are rarely found in single membrane-spanning domains, yet an arginine residue, R696 (the numbering is based on that of HXB2), is highly conserved in HIV-1 gp41. To examine the role of R696, it was mutated to K, A, I, L, D, E, N, and Q. Most of these substitutions did not affect the expression, processing or surface distribution of the envelope protein (Env). However, a syncytia formation assay showed that the substitution of R696 with amino acid residues other than K, a naturally observed mutation in the gp41 MSD, decreased fusion activity. Substitution with hydrophobic amino acid residues (A, I, and L) resulted in a modest decrease, while substitution with D or E, potentially negatively-charged residues, almost abolished the syncytia formation. All the fusion-defective mutants showed slower kinetics with the cell-based dual split protein (DSP) assay that scores the degree of membrane fusion based on pore formation between fusing cells. Interestingly, the D and E substitutions did show some fusion activity in the DSP assays, suggesting that proteins containing D or E substitutions retained some fusion pore-forming capability. However, nascent pores failed to develop, due probably to impaired activity in the pore enlargement process. Our data show the importance of this conserved arginine residue for efficient membrane fusion.

Keywords: human immunodeficiency virus, type-1 (HIV-1), gp41, membrane-spanning domain (MSD), arginine, membrane fusion

References

  1. Bonifacino J.S., Cosson P., Shah N., Klausner R.D. Role of potentially charged transmembrane residues in targeting proteins for retention and degradation within the endoplasmic reticulum. EMBO J. 1991;10:2783–2793. doi: 10.1002/j.1460-2075.1991.tb07827.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ciczora Y., Callens N., Montpellier C., Bartosch B., Cosset F.L., Op de Beeck A., Dubuisson J. Contribution of the charged residues of hepatitis C virus glycoprotein E2 transmembrane domain to the functions of the E1E2 heterodimer. J Gen Virol. 2005;86:2793–2798. doi: 10.1099/vir.0.81140-0. [DOI] [PubMed] [Google Scholar]
  3. Colman P.M., Lawrence M.C. The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol. 2003;4:309–319. doi: 10.1038/nrm1076. [DOI] [PubMed] [Google Scholar]
  4. Davis G.L., Hunter E. A charged amino acid substitution within the transmembrane anchor of the Rous sarcoma virus envelope glycoprotein affects surface expression but not intracellular transport. J Cell Biol. 1987;105:1191–1203. doi: 10.1083/jcb.105.3.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dubay J.W., Dubay S.R., Shin H.J., Hunter E. Analysis of the cleavage site of the human immunodeficiency virus type 1 glycoprotein: requirement of precursor cleavage for glycoprotein incorporation. J Virol. 1995;69:4675–4682. doi: 10.1128/jvi.69.8.4675-4682.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Freed E.O., Martin M.A. Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions. J Virol. 1996;70:341–351. doi: 10.1128/jvi.70.1.341-351.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gangupomu V.K., Abrams C.F. All-atom models of the membrane-spanning domain of HIV-1 gp41 from metadynamics. Biophys J. 2010;99:3438–3444. doi: 10.1016/j.bpj.2010.09.054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gu M., Rappaport J., Leppla S.H. Furin is important but not essential for the proteolytic maturation of gp160 of HIV-1. FEBS Lett. 1995;365:95–97. doi: 10.1016/0014-5793(95)00447-H. [DOI] [PubMed] [Google Scholar]
  9. Haffar O.K., Dowbenko D.J., Berman P.W. Topogenic analysis of the human immunodeficiency virus type 1 envelope glycoprotein, gp160, in microsomal membranes. J Cell Biol. 1988;107:1677–1687. doi: 10.1083/jcb.107.5.1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Helseth E., Olshevsky U., Gabuzda D., Ardman B., Haseltine W., Sodroski J. Changes in the transmembrane region of the human immunodeficiency virus type 1 gp41 envelope glycoprotein affect membrane fusion. J Virol. 1990;64:6314–6318. doi: 10.1128/jvi.64.12.6314-6318.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hessa T., Kim H., Bihlmaier K., Lundin C., Boekel J., Andersson H., Nilsson I., White S.H., von Heijne G. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature. 2005;433:377–381. doi: 10.1038/nature03216. [DOI] [PubMed] [Google Scholar]
  12. Kabat D., Kozak S.L., Wehrly K., Chesebro B. Differences in CD4 dependence for infectivity of laboratoryadapted and primary patient isolates of human immunodeficiency virus type 1. J Virol. 1994;68:2570–2577. doi: 10.1128/jvi.68.4.2570-2577.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kim J.H., Hartley T.L., Curran A.R., Engelman D.M. Molecular dynamics studies of the transmembrane domain of gp41 from HIV-1. Biochim Biophys Acta. 2009;1788:1804–1812. doi: 10.1016/j.bbamem.2009.06.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kitchen S.G., Zack J.A. CXCR4 expression during lymphopoiesis: implications for human immunodeficiency virus type 1 infection of the thymus. J Virol. 1997;71:6928–6934. doi: 10.1128/jvi.71.9.6928-6934.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kondo N., Miyauchi K., Matsuda Z. Monitoring viralmediated membrane fusion using fluorescent reporter methods. Curr Protoc Cell Biol Chapter. 2011;26:Unit 26.9. doi: 10.1002/0471143030.cb2609s50. [DOI] [PubMed] [Google Scholar]
  16. Kondo N., Miyauchi K., Meng F., Iwamoto A., Matsuda Z. Conformational changes of the HIV-1 envelope protein during membrane fusion are inhibited by the replacement of its membrane-spanning domain. J Biol Chem. 2010;285:14681–14688. doi: 10.1074/jbc.M109.067090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Li L., Vorobyov I., MacKerell A.D., Jr, Allen T.W. Is arginine charged in a membrane? Biophys J. 2008;94:L11–L13. doi: 10.1529/biophysj.107.121566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu S., Kondo N., Long Y., Xiao D., Iwamoto A., Matsuda Z. Membrane topology analysis of HIV-1 envelope glycoprotein gp41. Retrovirology. 2010;7:100. doi: 10.1186/1742-4690-7-100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Melikyan G.B. Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm. Retrovirology. 2008;5:111. doi: 10.1186/1742-4690-5-111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Miyauchi K., Curran A.R., Long Y., Kondo N., Iwamoto A., Engelman D.M., Matsuda Z. The membranespanning domain of gp41 plays a critical role in intracellular trafficking of the HIV envelope protein. Retrovirology. 2010;7:95. doi: 10.1186/1742-4690-7-95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miyauchi K., Komano J., Yokomaku Y., Sugiura W., Yamamoto N., Matsuda Z. Role of the specific amino acid sequence of the membrane-spanning domain of human immunodeficiency virus type 1 in membrane fusion. J Virol. 2005;79:4720–4729. doi: 10.1128/JVI.79.8.4720-4729.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morton H.C., van den Herik-Oudijk I.E., Vossebeld P., Snijders A., Verhoeven A.J., Capel P.J., van de Winkel J.G. Functional association between the human myeloid immunoglobulin A Fc receptor (CD89) and FcR gamma chain. Molecular basis for CD89/FcR gamma chain association. J Biol Chem. 1995;270:29781–29787. doi: 10.1074/jbc.270.50.29781. [DOI] [PubMed] [Google Scholar]
  23. Owens R.J., Burke C., Rose J.K. Mutations in the membrane-spanning domain of the human immunodeficiency virus envelope glycoprotein that affect fusion activity. J Virol. 1994;68:570–574. doi: 10.1128/jvi.68.1.570-574.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pietschmann T., Zentgraf H., Rethwilm A., Lindemann D. An evolutionarily conserved positively charged amino acid in the putative membrane-spanning domain of the foamy virus envelope protein controls fusion activity. J Virol. 2000;74:4474–4482. doi: 10.1128/JVI.74.10.4474-4482.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reeves J.D., Gallo S.A., Ahmad N., Miamidian J.L., Harvey P.E., Sharron M., Pohlmann S., Sfakianos J.N., Derdeyn C.A., Blumenthal R., et al. Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics. Proc Natl Acad Sci U S A. 2002;99:16249–16254. doi: 10.1073/pnas.252469399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rowell J.F., Stanhope P.E., Siliciano R.F. Endocytosis of endogenously synthesized HIV-1 envelope protein. Mechanism and role in processing for association with class II MHC. J Immunol. 1995;155:473–488. [PubMed] [Google Scholar]
  27. Shang L., Hunter E. Residues in the membranespanning domain core modulate conformation and fusogenicity of the HIV-1 envelope glycoprotein. Virology. 2010;404:158–167. doi: 10.1016/j.virol.2010.03.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shang L., Yue L., Hunter E. Role of the membranespanning domain of human immunodeficiency virus type 1 envelope glycoprotein in cell-cell fusion and virus infection. J Virol. 2008;82:5417–5428. doi: 10.1128/JVI.02666-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weiss C.D. HIV-1 gp41: mediator of fusion and target for inhibition. AIDS Rev. 2003;5:214–221. [PubMed] [Google Scholar]
  30. Welman M., Lemay G., Cohen E.A. Role of envelope processing and gp41 membrane spanning domain in the formation of human immunodeficiency virus type 1 (HIV-1) fusion-competent envelope glycoprotein complex. Virus Res. 2007;124:103–112. doi: 10.1016/j.virusres.2006.10.009. [DOI] [PubMed] [Google Scholar]
  31. Wilk T., Pfeiffer T., Bukovsky A., Moldenhauer G., Bosch V. Glycoprotein incorporation and HIV-1 infectivity despite exchange of the gp160 membrane-spanning domain. Virology. 1996;218:269–274. doi: 10.1006/viro.1996.0190. [DOI] [PubMed] [Google Scholar]
  32. Wyss S., Dimitrov A.S., Baribaud F., Edwards T.G., Blumenthal R., Hoxie J.A. Regulation of human immunodeficiency virus type 1 envelope glycoprotein fusion by a membraneinteractive domain in the gp41 cytoplasmic tail. J Virol. 2005;79:12231–12241. doi: 10.1128/JVI.79.19.12231-12241.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yang C., Spies C.P., Compans R.W. The human and simian immunodeficiency virus envelope glycoprotein transmembrane subunits are palmitoylated. Proc Natl Acad Sci U S A. 1995;92:9871–9875. doi: 10.1073/pnas.92.21.9871. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES