Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2011 Jun 2;2(5):384–394. doi: 10.1007/s13238-011-1055-9

A structural view of the antibiotic degradation enzyme NDM-1 from a superbug

Yu Guo 1,3, Jing Wang 1,3, Guojun Niu 1,3, Wenqing Shui 1,3, Yuna Sun 4, Honggang Zhou 1,3, Yaozhou Zhang 1, Cheng Yang 1,3, Zhiyong Lou 2,, Zihe Rao 1,2,3,4,
PMCID: PMC4875342  PMID: 21637961

Abstract

Gram-negative Enterobacteriaceae with resistance to carbapenem conferred by New Delhi metallo-β-lactamase 1 (NDM-1) are a type of newly discovered antibioticresistant bacteria. The rapid pandemic spread of NDM-1 bacteria worldwide (spreading to India, Pakistan, Europe, America, and Chinese Taiwan) in less than 2 months characterizes these microbes as a potentially major global health problem. The drug resistance of NDM-1 bacteria is largely due to plasmids containing the blaNDM-1 gene shuttling through bacterial populations. The NDM-1 enzyme encoded by the blaNDM-1 gene hydrolyzes β-lactam antibiotics, allowing the bacteria to escape the action of antibiotics. Although the biological functions and structural features of NDM-1 have been proposed according to results from functional and structural investigation of its homologues, the precise molecular characteristics and mechanism of action of NDM-1 have not been clarified. Here, we report the three-dimensional structure of NDM-1 with two catalytic zinc ions in its active site. Biological and mass spectroscopy results revealed that D-captopril can effectively inhibit the enzymatic activity of NDM-1 by binding to its active site with high binding affinity. The unique features concerning the primary sequence and structural conformation of the active site distinguish NDM-1 from other reported metallo-β-lactamases (MBLs) and implicate its role in wide spectrum drug resistance. We also discuss the molecular mechanism of NDM-1 action and its essential role in the pandemic of drug-resistant NDM-1 bacteria. Our results will provide helpful information for future drug discovery targeting drug resistance caused by NDM-1 and related metallo-β-lactamases.

Keywords: New Delhi metallo-β-lactamase 1 (NDM-1), drug resistance, crystal structure, drug discovery

Footnotes

These authors contributed equally to the work.

Contributor Information

Zhiyong Lou, Email: louzy@xtal.tsinghua.edu.cn.

Zihe Rao, Email: raozh@xtal.tsinghua.edu.cn.

References

  1. Abraham E.P., Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis. 1988;10:677–678. doi: 10.1093/clinids/10.4.677. [DOI] [PubMed] [Google Scholar]
  2. Adams P.D., Grosse-Kunstleve R.W., Hung L.W., Ioerger T.R., McCoy A.J., Moriarty N.W., Read R.J., Sacchettini J.C., Sauter N.K., Terwilliger T.C. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr. 2002;58:1948–1954. doi: 10.1107/S0907444902016657. [DOI] [PubMed] [Google Scholar]
  3. Antony J., Gresh N., Olsen L., Hemmingsen L., Schofield C.J., Bauer R. Binding of D- and L-captopril inhibitors to metallobeta-lactamase studied by polarizable molecular mechanics and quantum mechanics. J Comput Chem. 2002;23:1281–1296. doi: 10.1002/jcc.10111. [DOI] [PubMed] [Google Scholar]
  4. Baiden F., Owusu-Agyei S., Webster J., Chandramohan D. The need for new antibiotics. Lancet. 2010;375:637–638. doi: 10.1016/S0140-6736(10)60265-6. [DOI] [PubMed] [Google Scholar]
  5. Bauernfeind A., Chong Y., Lee K. Plasmid-encoded AmpC beta-lactamases: how far have we gone 10 years after the discovery? Yonsei Med J. 1998;39:520–525. doi: 10.3349/ymj.1998.39.6.520. [DOI] [PubMed] [Google Scholar]
  6. Bebrone C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol. 2007;74:1686–1701. doi: 10.1016/j.bcp.2007.05.021. [DOI] [PubMed] [Google Scholar]
  7. Carfi A., Pares S., Duée E., Galleni M., Duez C., Frère J.M., Dideberg O. The 3-D structure of a zinc metallo-betalactamase from Bacillus cereus reveals a new type of protein fold. EMBO J. 1995;14:4914–4921. doi: 10.1002/j.1460-2075.1995.tb00174.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chihara S., Okuzumi K., Yamamoto Y., Oikawa S., Hishinuma A. First case of New Delhi metallo-beta-lactamase 1-producing Escherichia coli infection in Japan. Clin Infect Dis. 2011;52:153–154. doi: 10.1093/cid/ciq054. [DOI] [PubMed] [Google Scholar]
  9. Concha N.O., Janson C.A., Rowling P., Pearson S., Cheever C.A., Clarke B.P., Lewis C., Galleni M., Frère J.M., Payne D.J., et al. Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broadspectrum inhibitor. Biochemistry. 2000;39:4288–4298. doi: 10.1021/bi992569m. [DOI] [PubMed] [Google Scholar]
  10. Daiyasu H., Osaka K., Ishino Y., Toh H. Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold. FEBS Lett. 2001;503:1–6. doi: 10.1016/S0014-5793(01)02686-2. [DOI] [PubMed] [Google Scholar]
  11. DeLano W. The PyMOL Molecular Graphics System. San Carlos, CA: DeLano Scientic; 2002. [Google Scholar]
  12. Emsley P., Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. [DOI] [PubMed] [Google Scholar]
  13. Garau G., Bebrone C., Anne C., Galleni M., Frère J.M., Dideberg O. A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. J Mol Biol. 2005;345:785–795. doi: 10.1016/j.jmb.2004.10.070. [DOI] [PubMed] [Google Scholar]
  14. Garcia-Saez I., Docquier J.D., Rossolini G.M., Dideberg O. The three-dimensional structure of VIM-2, a Zn-beta-lactamase from Pseudomonas aeruginosa in its reduced and oxidised form. J Mol Biol. 2008;375:604–611. doi: 10.1016/j.jmb.2007.11.012. [DOI] [PubMed] [Google Scholar]
  15. García-Saez I., Hopkins J., Papamicael C., Franceschini N., Amicosante G., Rossolini G.M., Galleni M., Frère J.M., Dideberg O. The 1.5-A structure of Chryseobacterium meningosepticum zinc beta-lactamase in complex with the inhibitor, D-captopril. J Biol Chem. 2003;278:23868–23873. doi: 10.1074/jbc.M301062200. [DOI] [PubMed] [Google Scholar]
  16. García-Sáez I., Mercuri P.S., Papamicael C., Kahn R., Frère J.M., Galleni M., Rossolini G.M., Dideberg O. Threedimensional structure of FEZ-1, a monomeric subclass B3 metallobeta-lactamase from Fluoribacter gormanii, in native form and in complex with D-captopril. J Mol Biol. 2003;325:651–660. doi: 10.1016/S0022-2836(02)01271-8. [DOI] [PubMed] [Google Scholar]
  17. Heddini A., Cars O., Qiang S., Tomson G. Antibiotic resistance in China—a major future challenge. Lancet. 2009;373:30. doi: 10.1016/S0140-6736(08)61956-X. [DOI] [PubMed] [Google Scholar]
  18. Krissinel E., Henrick K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr. 2004;60:2256–2268. doi: 10.1107/S0907444904026460. [DOI] [PubMed] [Google Scholar]
  19. Kumarasamy K.K., Toleman M.A., Walsh T.R., Bagaria J., Butt F., Balakrishnan R., Chaudhary U., Doumith M., Giske C.G., Irfan S., et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10:597–602. doi: 10.1016/S1473-3099(10)70143-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laskowski R., MacArthur M., Moss D., Thornton J. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993;26:283–291. doi: 10.1107/S0021889892009944. [DOI] [Google Scholar]
  21. Lassaux P., Hamel M., Gulea M., Delbrück H., Mercuri P.S., Horsfall L., Dehareng D., Kupper M., Frère J.M., Hoffmann K., et al. Mercaptophosphonate compounds as broad-spectrum inhibitors of the metallo-beta-lactamases. J Med Chem. 2010;53:4862–4876. doi: 10.1021/jm100213c. [DOI] [PubMed] [Google Scholar]
  22. Livermore D.M. Has the era of untreatable infections arrived? J Antimicrob Chemother. 2009;64:i29–i36. doi: 10.1093/jac/dkp255. [DOI] [PubMed] [Google Scholar]
  23. Matthews B.W. Solvent content of protein crystals. J Mol Biol. 1968;33:491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  24. McCoy A.J., Grosse-Kunstleve R.W., Adams P.D., Winn M.D., Storoni L.C., Read R.J. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moali C., Anne C., Lamotte-Brasseur J., Groslambert S., Devreese B., Van Beeumen J., Galleni M., Frère J.M. Analysis of the importance of the metallo-beta-lactamase active site loop in substrate binding and catalysis. Chem Biol. 2003;10:319–329. doi: 10.1016/S1074-5521(03)00070-X. [DOI] [PubMed] [Google Scholar]
  26. Moellering R.C., Jr. NDM-1—a cause for worldwide concern. N Engl J Med. 2010;363:2377–2379. doi: 10.1056/NEJMp1011715. [DOI] [PubMed] [Google Scholar]
  27. Otwinowski Z., Minor W. Processing of X-ray diffraction data collected in oscillation mode. In: Carter C.W. Jr., Sweet R.M., editors. Macromolecular Crystallography, part A. New York: Academic Press; 1997. pp. 307–326. [DOI] [PubMed] [Google Scholar]
  28. Sabbath L.D., Abraham E.P. Zinc as a cofactor for cephalosporinase from Bacillus cereus 569. Biochem J. 1966;98:11c–13c. doi: 10.1042/bj0980011C. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shimada A., Ishikawa H., Nakagawa N., Kuramitsu S., Masui R. The first crystal structure of an archaeal metallo-betalactamase superfamily protein; ST1585 from Sulfolobus tokodaii. Proteins. 2010;78:2399–2402. doi: 10.1002/prot.22749. [DOI] [PubMed] [Google Scholar]
  30. Struelens M.J., Monnet D.L., Magiorakos A.P., Santos O’Connor F., Giesecke J., the European NDM-1 Survey Participants New Delhi metallo-beta-lactamase 1-producing Enterobacteriaceae: emergence and response in Europe. Euro Surveill. 2010;15:pii = 19716. doi: 10.2807/ese.15.46.19716-en. [DOI] [PubMed] [Google Scholar]
  31. Walsh T.R. Emerging carbapenemases: a global perspective. Int J Antimicrob Agents. 2010;36:S8–S14. doi: 10.1016/S0924-8579(10)70004-2. [DOI] [PubMed] [Google Scholar]
  32. Walsh T.R., Weeks J., Livermore D.M., Toleman M.A. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis. 2011;11:355–362. doi: 10.1016/S1473-3099(11)70059-7. [DOI] [PubMed] [Google Scholar]
  33. Yong D., Toleman M.A., Giske C.G., Cho H.S., Sundman K., Lee K., Walsh T.R. Characterization of a new metallo-betalactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53:5046–5054. doi: 10.1128/AAC.00774-09. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES