Abstract
Gram-negative Enterobacteriaceae with resistance to carbapenem conferred by New Delhi metallo-β-lactamase 1 (NDM-1) are a type of newly discovered antibioticresistant bacteria. The rapid pandemic spread of NDM-1 bacteria worldwide (spreading to India, Pakistan, Europe, America, and Chinese Taiwan) in less than 2 months characterizes these microbes as a potentially major global health problem. The drug resistance of NDM-1 bacteria is largely due to plasmids containing the blaNDM-1 gene shuttling through bacterial populations. The NDM-1 enzyme encoded by the blaNDM-1 gene hydrolyzes β-lactam antibiotics, allowing the bacteria to escape the action of antibiotics. Although the biological functions and structural features of NDM-1 have been proposed according to results from functional and structural investigation of its homologues, the precise molecular characteristics and mechanism of action of NDM-1 have not been clarified. Here, we report the three-dimensional structure of NDM-1 with two catalytic zinc ions in its active site. Biological and mass spectroscopy results revealed that D-captopril can effectively inhibit the enzymatic activity of NDM-1 by binding to its active site with high binding affinity. The unique features concerning the primary sequence and structural conformation of the active site distinguish NDM-1 from other reported metallo-β-lactamases (MBLs) and implicate its role in wide spectrum drug resistance. We also discuss the molecular mechanism of NDM-1 action and its essential role in the pandemic of drug-resistant NDM-1 bacteria. Our results will provide helpful information for future drug discovery targeting drug resistance caused by NDM-1 and related metallo-β-lactamases.
Keywords: New Delhi metallo-β-lactamase 1 (NDM-1), drug resistance, crystal structure, drug discovery
Footnotes
These authors contributed equally to the work.
Contributor Information
Zhiyong Lou, Email: louzy@xtal.tsinghua.edu.cn.
Zihe Rao, Email: raozh@xtal.tsinghua.edu.cn.
References
- Abraham E.P., Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis. 1988;10:677–678. doi: 10.1093/clinids/10.4.677. [DOI] [PubMed] [Google Scholar]
- Adams P.D., Grosse-Kunstleve R.W., Hung L.W., Ioerger T.R., McCoy A.J., Moriarty N.W., Read R.J., Sacchettini J.C., Sauter N.K., Terwilliger T.C. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr. 2002;58:1948–1954. doi: 10.1107/S0907444902016657. [DOI] [PubMed] [Google Scholar]
- Antony J., Gresh N., Olsen L., Hemmingsen L., Schofield C.J., Bauer R. Binding of D- and L-captopril inhibitors to metallobeta-lactamase studied by polarizable molecular mechanics and quantum mechanics. J Comput Chem. 2002;23:1281–1296. doi: 10.1002/jcc.10111. [DOI] [PubMed] [Google Scholar]
- Baiden F., Owusu-Agyei S., Webster J., Chandramohan D. The need for new antibiotics. Lancet. 2010;375:637–638. doi: 10.1016/S0140-6736(10)60265-6. [DOI] [PubMed] [Google Scholar]
- Bauernfeind A., Chong Y., Lee K. Plasmid-encoded AmpC beta-lactamases: how far have we gone 10 years after the discovery? Yonsei Med J. 1998;39:520–525. doi: 10.3349/ymj.1998.39.6.520. [DOI] [PubMed] [Google Scholar]
- Bebrone C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol. 2007;74:1686–1701. doi: 10.1016/j.bcp.2007.05.021. [DOI] [PubMed] [Google Scholar]
- Carfi A., Pares S., Duée E., Galleni M., Duez C., Frère J.M., Dideberg O. The 3-D structure of a zinc metallo-betalactamase from Bacillus cereus reveals a new type of protein fold. EMBO J. 1995;14:4914–4921. doi: 10.1002/j.1460-2075.1995.tb00174.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chihara S., Okuzumi K., Yamamoto Y., Oikawa S., Hishinuma A. First case of New Delhi metallo-beta-lactamase 1-producing Escherichia coli infection in Japan. Clin Infect Dis. 2011;52:153–154. doi: 10.1093/cid/ciq054. [DOI] [PubMed] [Google Scholar]
- Concha N.O., Janson C.A., Rowling P., Pearson S., Cheever C.A., Clarke B.P., Lewis C., Galleni M., Frère J.M., Payne D.J., et al. Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broadspectrum inhibitor. Biochemistry. 2000;39:4288–4298. doi: 10.1021/bi992569m. [DOI] [PubMed] [Google Scholar]
- Daiyasu H., Osaka K., Ishino Y., Toh H. Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold. FEBS Lett. 2001;503:1–6. doi: 10.1016/S0014-5793(01)02686-2. [DOI] [PubMed] [Google Scholar]
- DeLano W. The PyMOL Molecular Graphics System. San Carlos, CA: DeLano Scientic; 2002. [Google Scholar]
- Emsley P., Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. [DOI] [PubMed] [Google Scholar]
- Garau G., Bebrone C., Anne C., Galleni M., Frère J.M., Dideberg O. A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. J Mol Biol. 2005;345:785–795. doi: 10.1016/j.jmb.2004.10.070. [DOI] [PubMed] [Google Scholar]
- Garcia-Saez I., Docquier J.D., Rossolini G.M., Dideberg O. The three-dimensional structure of VIM-2, a Zn-beta-lactamase from Pseudomonas aeruginosa in its reduced and oxidised form. J Mol Biol. 2008;375:604–611. doi: 10.1016/j.jmb.2007.11.012. [DOI] [PubMed] [Google Scholar]
- García-Saez I., Hopkins J., Papamicael C., Franceschini N., Amicosante G., Rossolini G.M., Galleni M., Frère J.M., Dideberg O. The 1.5-A structure of Chryseobacterium meningosepticum zinc beta-lactamase in complex with the inhibitor, D-captopril. J Biol Chem. 2003;278:23868–23873. doi: 10.1074/jbc.M301062200. [DOI] [PubMed] [Google Scholar]
- García-Sáez I., Mercuri P.S., Papamicael C., Kahn R., Frère J.M., Galleni M., Rossolini G.M., Dideberg O. Threedimensional structure of FEZ-1, a monomeric subclass B3 metallobeta-lactamase from Fluoribacter gormanii, in native form and in complex with D-captopril. J Mol Biol. 2003;325:651–660. doi: 10.1016/S0022-2836(02)01271-8. [DOI] [PubMed] [Google Scholar]
- Heddini A., Cars O., Qiang S., Tomson G. Antibiotic resistance in China—a major future challenge. Lancet. 2009;373:30. doi: 10.1016/S0140-6736(08)61956-X. [DOI] [PubMed] [Google Scholar]
- Krissinel E., Henrick K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr. 2004;60:2256–2268. doi: 10.1107/S0907444904026460. [DOI] [PubMed] [Google Scholar]
- Kumarasamy K.K., Toleman M.A., Walsh T.R., Bagaria J., Butt F., Balakrishnan R., Chaudhary U., Doumith M., Giske C.G., Irfan S., et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10:597–602. doi: 10.1016/S1473-3099(10)70143-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laskowski R., MacArthur M., Moss D., Thornton J. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993;26:283–291. doi: 10.1107/S0021889892009944. [DOI] [Google Scholar]
- Lassaux P., Hamel M., Gulea M., Delbrück H., Mercuri P.S., Horsfall L., Dehareng D., Kupper M., Frère J.M., Hoffmann K., et al. Mercaptophosphonate compounds as broad-spectrum inhibitors of the metallo-beta-lactamases. J Med Chem. 2010;53:4862–4876. doi: 10.1021/jm100213c. [DOI] [PubMed] [Google Scholar]
- Livermore D.M. Has the era of untreatable infections arrived? J Antimicrob Chemother. 2009;64:i29–i36. doi: 10.1093/jac/dkp255. [DOI] [PubMed] [Google Scholar]
- Matthews B.W. Solvent content of protein crystals. J Mol Biol. 1968;33:491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
- McCoy A.J., Grosse-Kunstleve R.W., Adams P.D., Winn M.D., Storoni L.C., Read R.J. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moali C., Anne C., Lamotte-Brasseur J., Groslambert S., Devreese B., Van Beeumen J., Galleni M., Frère J.M. Analysis of the importance of the metallo-beta-lactamase active site loop in substrate binding and catalysis. Chem Biol. 2003;10:319–329. doi: 10.1016/S1074-5521(03)00070-X. [DOI] [PubMed] [Google Scholar]
- Moellering R.C., Jr. NDM-1—a cause for worldwide concern. N Engl J Med. 2010;363:2377–2379. doi: 10.1056/NEJMp1011715. [DOI] [PubMed] [Google Scholar]
- Otwinowski Z., Minor W. Processing of X-ray diffraction data collected in oscillation mode. In: Carter C.W. Jr., Sweet R.M., editors. Macromolecular Crystallography, part A. New York: Academic Press; 1997. pp. 307–326. [DOI] [PubMed] [Google Scholar]
- Sabbath L.D., Abraham E.P. Zinc as a cofactor for cephalosporinase from Bacillus cereus 569. Biochem J. 1966;98:11c–13c. doi: 10.1042/bj0980011C. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimada A., Ishikawa H., Nakagawa N., Kuramitsu S., Masui R. The first crystal structure of an archaeal metallo-betalactamase superfamily protein; ST1585 from Sulfolobus tokodaii. Proteins. 2010;78:2399–2402. doi: 10.1002/prot.22749. [DOI] [PubMed] [Google Scholar]
- Struelens M.J., Monnet D.L., Magiorakos A.P., Santos O’Connor F., Giesecke J., the European NDM-1 Survey Participants New Delhi metallo-beta-lactamase 1-producing Enterobacteriaceae: emergence and response in Europe. Euro Surveill. 2010;15:pii = 19716. doi: 10.2807/ese.15.46.19716-en. [DOI] [PubMed] [Google Scholar]
- Walsh T.R. Emerging carbapenemases: a global perspective. Int J Antimicrob Agents. 2010;36:S8–S14. doi: 10.1016/S0924-8579(10)70004-2. [DOI] [PubMed] [Google Scholar]
- Walsh T.R., Weeks J., Livermore D.M., Toleman M.A. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis. 2011;11:355–362. doi: 10.1016/S1473-3099(11)70059-7. [DOI] [PubMed] [Google Scholar]
- Yong D., Toleman M.A., Giske C.G., Cho H.S., Sundman K., Lee K., Walsh T.R. Characterization of a new metallo-betalactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53:5046–5054. doi: 10.1128/AAC.00774-09. [DOI] [PMC free article] [PubMed] [Google Scholar]