Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2012 Sep 15;3(10):781–789. doi: 10.1007/s13238-012-2065-y

HER3 intracellular domains play a crucial role in HER3/HER2 dimerization and activation of downstream signaling pathways

Byung-Kwon Choi 1, Xiumei Cai 1,2, Bin Yuan 1,3, Zhao Huang 1, Xuejun Fan 1, Hui Deng 1, Ningyan Zhang 1,, Zhiqiang An 1,
PMCID: PMC4875347  PMID: 22983903

Abstract

Dimerization among the EGFR family of tyrosine kinase receptors leads to allosteric activation of the kinase domains of the partners. Unlike other members in the family, the kinase domain of HER3 lacks key amino acid residues for catalytic activity. As a result, HER3 is suggested to serve as an allosteric activator of other EGFR family members which include EGFR, HER2 and HER4. To study the role of intracellular domains in HER3 dimerization and activation of downstream signaling pathways, we constructed HER3/HER2 chimeric receptors by replacing the HER3 kinase domain (HER3-2-3) or both the kinase domain and the C-terminal tail (HER3-2-2) with the HER2 counterparts and expressed the chimeric receptors in Chinese hamster ovary (CHO) cells. While over expression of the intact human HER3 transformed CHO cells with oncogenic properties such as AKT/ERK activation and increased proliferation and migration, CHO cells expressing the HER3-2-3 chimeric receptor showed significantly reduced HER3/HER2 dimerization and decreased phosphorylation of both AKT and ERK1/2 in the presence of neuregulin-1 (NRG-1). In contrast, CHO cells expressing the HER3-2-2 chimeric receptor resulted in a total loss of downstream AKT activation in response to NRG-1, but maintained partial activation of ERK1/2. The results demonstrate that the intracellular domains play a crucial role in HER3’s function as an allosteric activator and its role in downstream signaling.

Keywords: HER3, HER2, cell proliferation, cell migration, PI3K/AKT, MAPK/ERK1/2

Contributor Information

Ningyan Zhang, Email: ningyan.zhang@uth.tmc.edu.

Zhiqiang An, Email: zhiqiang.an@uth.tmc.edu.

References

  1. Amin D.N., Campbell M.R., Moasser M.M. The role of HER3, the unpretentious member of the HER family, in cancer biology and cancer therapeutics. Semin Cell Dev Biol. 2010;21:944–950. doi: 10.1016/j.semcdb.2010.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amin D.N., Sergina N., Ahuja D., McMahon M., Blair J.A., Wang D., Hann B., Koch K.M., Shokat K.M., Moasser M.M. Resiliency and vulnerability in the HER2-HER3 tumorigenic driver. Sci Transl Med. 2010;2:16ra17. doi: 10.1126/scitranslmed.3000389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baselga J., Swain S.M. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer. 2009;9:463–475. doi: 10.1038/nrc2656. [DOI] [PubMed] [Google Scholar]
  4. Berger M.B., Mendrola J.M., Lemmon M.A. ErbB3/HER3 does not homodimerize upon neuregulin binding at the cell surface. FEBS Lett. 2004;569:332–336. doi: 10.1016/j.febslet.2004.06.014. [DOI] [PubMed] [Google Scholar]
  5. Campbell M.R., Amin D., Moasser M.M. HER3 comes of age: new insights into its functions and role in signaling, tumor biology, and cancer therapy. Clin Cancer Res. 2010;16:1373–1383. doi: 10.1158/1078-0432.CCR-09-1218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chan S.D., Antoniucci D.M., Fok K.S., Alajoki M.L., Harkins R.N., Thompson S.A., Wada H.G. Heregulin activation of extracellular acidification in mammary carcinoma cells is associated with expression of HER2 and HER3. J Biol Chem. 1995;270:22608–22613. doi: 10.1074/jbc.270.38.22608. [DOI] [PubMed] [Google Scholar]
  7. Choi, B.-K., Fan, X., Deng, H., Zhang, N. and An, Z. (2012), ERBB3 (HER3) is a key sensor in the regulation of ERBB-mediated signaling in both low and high ERBB2 (HER2) expressing cancer cells. Cancer Medicine. doi:10.1002/cam4.10 [DOI] [PMC free article] [PubMed]
  8. Engelman J.A., Zejnullahu K., Mitsudomi T., Song Y., Hyland C., Park J.O., Lindeman N., Gale C.M., Zhao X., Christensen J., et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–1043. doi: 10.1126/science.1141478. [DOI] [PubMed] [Google Scholar]
  9. Huang Z., Brdlik C., Jin P., Shepard H.M. A pan-HER approach for cancer therapy: background, current status and future development. Expert Opin Biol Ther. 2009;9:97–110. doi: 10.1517/14712590802630427. [DOI] [PubMed] [Google Scholar]
  10. Jura N., Shan Y., Cao X., Shaw D.E., Kuriyan J. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc Natl Acad Sci U S A. 2009;106:21608–21613. doi: 10.1073/pnas.0912101106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jura N., Endres N.F., Engel K., Deindl S., Das R., Lamers M.H., Wemmer D.E., Zhang X., Kuriyan J. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell. 2009;137:1293–1307. doi: 10.1016/j.cell.2009.04.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kong A., Calleja V., Leboucher P., Harris A., Parker P.J., Larijani B. HER2 oncogenic function escapes EGFR tyrosine kinase inhibitors via activation of alternative HER receptors in breast cancer cells. PLoS One. 2008;3:e2881. doi: 10.1371/journal.pone.0002881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krug A.W., Schuster C., Gassner B., Freudinger R., Mildenberger S., Troppmair J., Gekle M. Human epidermal growth factor receptor-1 expression renders Chinese hamster ovary cells sensitive to alternative aldosterone signaling. J Biol Chem. 2002;277:45892–45897. doi: 10.1074/jbc.M208851200. [DOI] [PubMed] [Google Scholar]
  14. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. [DOI] [PubMed] [Google Scholar]
  15. Mattoon D.R., Lamothe B., Lax I., Schlessinger J. The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway. BMC Biol. 2004;2:24. doi: 10.1186/1741-7007-2-24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Narayan M., Wilken J.A., Harris L.N., Baron A.T., Kimbler K.D., Maihle N.J. Trastuzumab-induced HER reprogramming in “resistant” breast carcinoma cells. Cancer Res. 2009;69:2191–2194. doi: 10.1158/0008-5472.CAN-08-1056. [DOI] [PubMed] [Google Scholar]
  17. Rothe, M., Treder, M., Hartmann, S., Freeman, D., and Radinsky, B. (2007). Antibodies directed to HER-3 and uses thereof. In World Intellectual Property Organization, W.I.P. Organization, ed.
  18. Schoeberl B., Pace E.A., Fitzgerald J.B., Harms B.D., Xu L., Nie L., Linggi B., Kalra A., Paragas V., Bukhalid R., et al. Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci Signal. 2009;2:ra31. doi: 10.1126/scisignal.2000352. [DOI] [PubMed] [Google Scholar]
  19. Shepard H.M., Brdlik C., Schreiber H. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family. The Journal of Clinical Investigation. 2008;118:3574–3581. doi: 10.1172/JCI36049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sierke S.L., Cheng K., Kim H.H., Koland J.G. Biochemical characterization of the protein tyrosine kinase homology domain of the ErbB3 (HER3) receptor protein. Biochem J. 1997;322(Pt3):757–763. doi: 10.1042/bj3220757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Suenaga A., Takada N., Hatakeyama M., Ichikawa M., Yu X., Tomii K., Okimoto N., Futatsugi N., Narumi T., Shirouzu M., et al. Novel mechanism of interaction of p85 subunit of phosphatidylinositol 3-kinase and ErbB3 receptor-derived phosphotyrosyl peptides. J Biol Chem. 2005;280:1321–1326. doi: 10.1074/jbc.M410436200. [DOI] [PubMed] [Google Scholar]
  22. Wheeler D.L., Huang S., Kruser T.J., Nechrebecki M.M., Armstrong E.A., Benavente S., Gondi V., Hsu K.T., Harari P.M. Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene. 2008;27:3944–3956. doi: 10.1038/onc.2008.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zhang N., Liu L., Dan Dumitru C., Cummings N.R., Cukan M., Jiang Y., Li Y., Li F., Mitchell T., Mallem M.R., et al. Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study. MAbs. 2011;3:298–98. doi: 10.4161/mabs.3.3.15532. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES