Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2012 Jul 22;3(8):609–617. doi: 10.1007/s13238-012-2052-3

Crystal structure and functional implication of the RUN domain of human NESCA

Qifan Sun 1,2, Chuanhui Han 2,3, Lan Liu 1,2, Yizhi Wang 1,2, Hongyu Deng 3, Lin Bai 1,, Tao Jiang 1,
PMCID: PMC4875354  PMID: 22821014

Abstract

NESCA, a newly discovered signaling adapter protein in the NGF-pathway, contains a RUN domain at its N-terminus. Here we report the crystal structure of the NESCA RUN domain determined at 2.0-Å resolution. The overall fold of the NESCA RUN domain comprises nine helices, resembling the RUN domain of RPIPx and the RUN1 domain of Rab6IP1. However, compared to the other RUN domains, the RUN domain of NESCA has significantly different surface electrostatic distributions at the putative GTPase-interacting interface. We demonstrate that the RUN domain of NESCA can bind H-Ras, a downstream signaling molecule of TrkA, with high affinity. Moreover, NESCA RUN can directly interact with TrkA. These results provide new insights into how NESCA participates in the NGF-TrkA signaling pathway.

Keywords: NESCA, RUN domain, crystal structure, TrkA, Ras

Contributor Information

Lin Bai, Email: bailin2002@moon.ibp.ac.cn.

Tao Jiang, Email: tjiang@sun5.ibp.ac.cn.

References

  1. Adams P.D., Grosse-Kunstleve R.W., Hung L.W., Ioerger T.R., McCoy A.J., Moriarty N.W., Read R.J., Sacchettini J.C., Sauter N.K., Terwilliger T.C. PHENIX: building new software for automated crystallographic structure determination. Acta Cryst D Biol Crystallogr. 2002;58:1948–1954. doi: 10.1107/S0907444902016657. [DOI] [PubMed] [Google Scholar]
  2. Ballif B.A., Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ. 2001;12:397–408. [PubMed] [Google Scholar]
  3. Callebaut I., de Gunzburg J., Goud B., Mornon J.P. RUN domains: a new family of domains involved in Ras-like GTPase signaling. Trends Biochem Sci. 2001;26:79–83. doi: 10.1016/S0968-0004(00)01730-8. [DOI] [PubMed] [Google Scholar]
  4. Campbell S.L., Khosravi-Far R., Rossman K.L., Clark G.J., Der C.J. Increasing complexity of Ras signaling. Oncogene. 1998;17:1395–1413. doi: 10.1038/sj.onc.1202174. [DOI] [PubMed] [Google Scholar]
  5. Doublie S. Production of selenomethionyl proteins in prokaryotic and eukaryotic expression systems. Methods Mol Biol (Clifton, N.J.) 2007;363:91–108. doi: 10.1007/978-1-59745-209-0_5. [DOI] [PubMed] [Google Scholar]
  6. Emsley P., Cowtan K. Coot: model-building tools for molecular graphics. Acta Cryst D Biol Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. [DOI] [PubMed] [Google Scholar]
  7. Frade J.M., Barde Y.A. Nerve growth factor: two receptors, multiple functions. Bioessays. 1998;20:137–145. doi: 10.1002/(SICI)1521-1878(199802)20:2<137::AID-BIES6>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  8. Grewal S.S., York R.D., Stork P.J. Extracellular-signal-regulated kinase signalling in neurons. Curr Opin Neurobiol. 1999;9:544–553. doi: 10.1016/S0959-4388(99)00010-0. [DOI] [PubMed] [Google Scholar]
  9. Gryz E.A., Meakin S.O. Acidic substitution of the activation loop tyrosines in TrkA supports nerve growth factor-independent cell survival and neuronal differentiation. Oncogene. 2000;19:417–430. doi: 10.1038/sj.onc.1203330. [DOI] [PubMed] [Google Scholar]
  10. Huang E.J., Reichardt L.F. Trk receptors: Roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609–642. doi: 10.1146/annurev.biochem.72.121801.161629. [DOI] [PubMed] [Google Scholar]
  11. Jacobson M.S. Adolescent nutritional disorders: prevention and treatment. New York, N.Y.: New York Academy of Sciences; 1997. [PubMed] [Google Scholar]
  12. Janoueix-Lerosey I., Pasheva E., de Tand M.F., Tavitian A., de Gunzburg J. Identification of a specific effector of the small GTP-binding protein Rap2. Eur J Biochem. 1998;252:290–298. doi: 10.1046/j.1432-1327.1998.2520290.x. [DOI] [PubMed] [Google Scholar]
  13. Kaplan D.R., Miller F.D. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 2000;10:381–391. doi: 10.1016/S0959-4388(00)00092-1. [DOI] [PubMed] [Google Scholar]
  14. Kukimoto-Niino M., Takagi T., Akasaka R., Murayama K., Uchikubo-Kamo T., Terada T., Inoue M., Watanabe S., Tanaka A., Hayashizaki Y., et al. Crystal structure of the RUN domain of the RAP2-interacting protein x. J Biol Chem. 2006;281:31843–31853. doi: 10.1074/jbc.M604960200. [DOI] [PubMed] [Google Scholar]
  15. Levi-Montalcini R. The nerve growth factor 35 years later. Science. 1987;237:1154–1162. doi: 10.1126/science.3306916. [DOI] [PubMed] [Google Scholar]
  16. Macdonald, J.I., Dietrich, A., Gamble, S., Hryciw, T., Grant, R.I., and Meakin, S.O. (2012). Nesca, a novel neuronal adapter protein, links the molecular motor kinesin with the pre-synaptic membrane protein, syntaxin-1, in hippocampal neurons. J Neurochem. (In Press). [DOI] [PubMed]
  17. MacDonald J.I.S., Kubu C.J., Meakin S.O. Nesca, a novel adapter, translocates to the nuclear envelope and regulates neurotrophin-induced neurite outgrowth. J Cell Biol. 2004;164:851–862. doi: 10.1083/jcb.200309081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matsuda S., Miyazaki K., Ichigotani Y., Kurata H., Takenouchi Y., Yamamoto T., Nimura Y., Irimura T., Nakatsugawa S., Hamaguchi M. Molecular cloning and characterization of a novel human gene (NESCA) which encodes a putative adapter protein containing SH3. Biochim Biophys Acta. 2000;1491:321–326. doi: 10.1016/S0167-4781(00)00049-X. [DOI] [PubMed] [Google Scholar]
  19. Murshudov G.N., Vagin A.A., Dodson E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Cryst D Biol Crystallogr. 1997;53:240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
  20. Napolitano G., Mirra S., Monfregola J., Lavorgna A., Leonardi A., Ursini M.V. NESCA: A New NEMO/IKKgamma and TRAF6 Interacting Protein. J Cell Physiol. 2009;220:410–417. doi: 10.1002/jcp.21782. [DOI] [PubMed] [Google Scholar]
  21. Nimnual A.S., Yatsula B.A., Bar-Sagi D. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science. 1998;279:560–563. doi: 10.1126/science.279.5350.560. [DOI] [PubMed] [Google Scholar]
  22. Otwinowski Z., Minor W. Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol. 1997;276:307–326. doi: 10.1016/S0076-6879(97)76066-X. [DOI] [PubMed] [Google Scholar]
  23. Pierce B.G., Hourai Y., Weng Z. Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLOS One. 2011;6:e24657. doi: 10.1371/journal.pone.0024657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Recacha R., Boulet A., Jollivet F., Monier S., Houdusse A., Goud B., Khan A.R. Structural basis for recruitment of Rab6-interacting protein 1 to Golgi via a RUN domain. Structure. 2009;17:21–30. doi: 10.1016/j.str.2008.10.014. [DOI] [PubMed] [Google Scholar]
  25. Reichardt L.F. Neurotrophin-regulated signalling pathways. Phi-los Trans R Soc Lond B Biol Sci. 2006;361:1545–1564. doi: 10.1098/rstb.2006.1894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rodrigueztebar A., Dechant G., Barde Y.A. Binding of brain-derived neurotrophic factor to the nerve growth-factor receptor. Neuron. 1990;4:487–492. doi: 10.1016/0896-6273(90)90107-Q. [DOI] [PubMed] [Google Scholar]
  27. Shooter E.M. Early days of the nerve growth factor proteins. Annu Rev Neurosci. 2001;24:601–629. doi: 10.1146/annurev.neuro.24.1.601. [DOI] [PubMed] [Google Scholar]
  28. Vanhaesebroeck B., Leevers S.J., Ahmadi K., Timms J., Katso R., Driscoll P.C., Woscholski R., Parker P.J., Waterfield M.D. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem. 2001;70:535–602. doi: 10.1146/annurev.biochem.70.1.535. [DOI] [PubMed] [Google Scholar]
  29. Xing J., Kornhauser J.M., Xia Z., Thiele E.A., Greenberg M.E. Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation. Mol Cell Biol. 1998;18:1946–1955. doi: 10.1128/MCB.18.4.1946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yang H.B., Kim O., Wu J., Qiu Y. Interaction between tyrosine kinase Etk and a RUN domain- and FYVE domain-containing protein RUFY1 — A possible role of Etk in regulation of vesicle trafficking. J Biol Chem. 2002;277:30219–30226. doi: 10.1074/jbc.M111933200. [DOI] [PubMed] [Google Scholar]
  31. Zhu D.Y., Zhu Y.Q., Xiang Y., Wang D.C. Optimizing protein crystal growth through dynamic seeding. Acta Cryst D Biol Crystallogr. 2005;61:772–775. doi: 10.1107/S0907444904028768. [DOI] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES