Abstract
Phagocytosis and innate immune responses to solid structures are topics of interest and debate. Alum, monosodium urate, calcium pyrophosphate dehydrate, silica and by extension all solid entities draw varying degrees of attention from phagocytes, such as antigen presenting cells. For some, innocuous soluble metabolites turn into fierce irritants upon crystallization, pointing to divergent signaling mechanisms of a given substance in its soluble and solid states. Over the years, many mechanisms have been proposed, including phagocytic receptors, toll like receptors, and NACHT-LRRs (NLRs), as well as several other protein structure mediated recognition of the solids. Is there a more general mechanism for sensing solids? In this perspective, I present an alternative view on the topic that membrane lipids can engage solid surfaces, and the binding intensity leads to cellular activation. I argue from the stands of evolution and biological necessity, as well as the progression of our understanding of cellular membranes and phagocytosis. The effort is to invite debate of the topic from a less familiar yet equally thrilling viewing angle.
References
- Akya A., Pointon A., Thomas C. Mechanism involved in phagocytosis and killing of Listeria monocytogenes by Acanthamoeba polyphaga. Parasitol Res. 2009;105:1375–1383. doi: 10.1007/s00436-009-1565-z. [DOI] [PubMed] [Google Scholar]
- Avery S.V., Harwood J.L., Lloyd D. Quantification and Characterization of Phagocytosis in the Soil Amoeba Acanthamoeba castellanii by Flow Cytometry. Appl Environ Microbiol. 1995;61:1124–1132. doi: 10.1128/aem.61.3.1124-1132.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bigelow M.W., Wiessner J.H., Kleinman J.G., Mandel N.S. Calcium oxalate-crystal membrane interactions: dependence on membrane lipid composition. J Urol. 1996;155:1094–1098. doi: 10.1016/S0022-5347(01)66398-5. [DOI] [PubMed] [Google Scholar]
- Bigelow M.W., Wiessner J.H., Kleinman J.G., Mandel N.S. The dependence on membrane fluidity of calcium oxalate crystal attachment to IMCD membranes. Calcif Tissue Int. 1997;60:375–379. doi: 10.1007/s002239900246. [DOI] [PubMed] [Google Scholar]
- Chung C.Y., Funamoto S., Firtel R.A. Signaling pathways controlling cell polarity and chemotaxis. Trends Biochem Sci. 2001;26:557–566. doi: 10.1016/S0968-0004(01)01934-X. [DOI] [PubMed] [Google Scholar]
- Flach T.L., Ng G., Hari A., Desrosiers M.D., Zhang P., Ward S.M., Seamone M.E., Vilaysane A., Mucsi A.D., Fong Y., et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat Med. 2011;17:479–487. doi: 10.1038/nm.2306. [DOI] [PubMed] [Google Scholar]
- Franchi L., Núñez G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. Eur J Immunol. 2008;38:2085–2089. doi: 10.1002/eji.200838549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon V.D., Deserno M., Andrew C.M.J., Egelhaaf S.U., Poon W.C.K. Adhesion promotes phase separation in mixed-lipid membranes. EPL. 2008;84:48003. doi: 10.1209/0295-5075/84/48003. [DOI] [Google Scholar]
- Guarda G., Braun M., Staehli F., Tardivel A., Mattmann C., Förster I., Farlik M., Decker T., Du Pasquier R.A., Romero P., et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity. 2011;34:213–223. doi: 10.1016/j.immuni.2011.02.006. [DOI] [PubMed] [Google Scholar]
- Harder T., Engelhardt K.R. Membrane domains in lymphocytes — from lipid rafts to protein scaffolds. Traffic. 2004;5:265–275. doi: 10.1111/j.1600-0854.2003.00163.x. [DOI] [PubMed] [Google Scholar]
- John K., Bär M. Travelling lipid domains in a dynamic model for protein-induced pattern formation in biomembranes. Phys Biol. 2005;2:123–132. doi: 10.1088/1478-3975/2/2/005. [DOI] [PubMed] [Google Scholar]
- Karnovsky M.L. Metchnikoff in Messina: a century of studies on phagocytosis. N Engl J Med. 1981;304:1178–1180. doi: 10.1056/NEJM198105073041923. [DOI] [PubMed] [Google Scholar]
- Koka R.M., Huang E., Lieske J.C. Adhesion of uric acid crystals to the surface of renal epithelial cells. Am J Physiol Renal Physiol. 2000;278:F989–F998. doi: 10.1152/ajprenal.2000.278.6.F989. [DOI] [PubMed] [Google Scholar]
- Kuroda E., Ishii K.J., Uematsu S., Ohata K., Coban C., Akira S., Aritake K., Urade Y., Morimoto Y. Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms. Immunity. 2011;34:514–526. doi: 10.1016/j.immuni.2011.03.019. [DOI] [PubMed] [Google Scholar]
- Kusumi A., Koyama-Honda I., Suzuki K. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic. 2004;5:213–230. doi: 10.1111/j.1600-0854.2004.0178.x. [DOI] [PubMed] [Google Scholar]
- Kusumi A., Suzuki K. Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta. 2005;1746:234–251. doi: 10.1016/j.bbamcr.2005.10.001. [DOI] [PubMed] [Google Scholar]
- Levental I., Grzybek M., Simons K. Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry. 2010;49:6305–6316. doi: 10.1021/bi100882y. [DOI] [PubMed] [Google Scholar]
- Magal L.G., Yaffe Y., Shepshelovich J., Aranda J.F., de Marco Mdel.C., Gaus K., Alonso M.A., Hirschberg K. Clustering and lateral concentration of raft lipids by the MAL protein. Mol Biol Cell. 2009;20:3751–3762. doi: 10.1091/mbc.E09-02-0142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandel N. Crystal-membrane interaction in kidney stone disease. J Am Soc Nephrol. 1994;5:S37–S45. doi: 10.1681/ASN.V55s37. [DOI] [PubMed] [Google Scholar]
- Mandel N.S. The structural basis of crystal-induced membranolysis. Arthritis Rheum. 1976;19:439–445. doi: 10.1002/1529-0131(197605/06)19:3+<439::AID-ART1780190719>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
- Mandel N.S., Mandel G.S. Monosodium urate monohydrate, the gout culprit. J Am Chem Soc. 1976;98:2319–2323. doi: 10.1021/ja00424a054. [DOI] [PubMed] [Google Scholar]
- Martinac B. Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci. 2004;117:2449–2460. doi: 10.1242/jcs.01232. [DOI] [PubMed] [Google Scholar]
- Martinon F., Mayor A., Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol. 2009;27:229–265. doi: 10.1146/annurev.immunol.021908.132715. [DOI] [PubMed] [Google Scholar]
- McKee A.S., Munks M.W., MacLeod M.K., Fleenor C.J., Van Rooijen N., Kappler J.W., Marrack P. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J Immunol. 2009;183:4403–4414. doi: 10.4049/jimmunol.0900164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMahon H.T., Gallop J.L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature. 2005;438:590–596. doi: 10.1038/nature04396. [DOI] [PubMed] [Google Scholar]
- Ng G., Sharma K., Ward S.M., Desrosiers M.D., Stephens L.A., Schoel W.M., Li T., Lowell C.A., Ling C.C., Amrein M.W., et al. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity. 2008;29:807–818. doi: 10.1016/j.immuni.2008.09.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen S.O., Lopez C.F., Ivanov I., Moore P.B., Shelley J.C., Klein M.L. Transmembrane peptide-induced lipid sorting and mechanism of Lalpha-to-inverted phase transition using coarse-grain molecular dynamics. Biophys J. 2004;87:2107–2115. doi: 10.1529/biophysj.104.040311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pike L.J. The challenge of lipid rafts. J Lipid Res. 2009;50:S323–S328. doi: 10.1194/jlr.R800040-JLR200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roux A., Cuvelier D., Nassoy P., Prost J., Bassereau P., Goud B. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 2005;24:1537–1545. doi: 10.1038/sj.emboj.7600631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simons K., van Meer G. Lipid sorting in epithelial cells. Biochemistry. 1988;27:6197–6202. doi: 10.1021/bi00417a001. [DOI] [PubMed] [Google Scholar]
- Simons K., Vaz W.L. Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct. 2004;33:269–295. doi: 10.1146/annurev.biophys.32.110601.141803. [DOI] [PubMed] [Google Scholar]
- Singer S.J., Nicolson G.L. The fluid mosaic model of the structure of cell membranes. Science. 1972;175:720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
- Sorre B., Callan-Jones A., Manneville J.B., Nassoy P., Joanny J.F., Prost J., Goud B., Bassereau P. Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc Natl Acad Sci U S A. 2009;106:5622–5626. doi: 10.1073/pnas.0811243106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ueda I., Kamaya H. Molecular mechanisms of anesthesia. Anesth Analg. 1984;63:929–945. doi: 10.1213/00000539-198410000-00011. [DOI] [PubMed] [Google Scholar]
- Underhill D.M., Ozinsky A. Phagocytosis of microbes: complexity in action. Annu Rev Immunol. 2002;20:825–852. doi: 10.1146/annurev.immunol.20.103001.114744. [DOI] [PubMed] [Google Scholar]
- Urban B.W., Bleckwenn M., Barann M. Interactions of anesthetics with their targets: non-specific, specific or both? Pharmacol Ther. 2006;111:729–770. doi: 10.1016/j.pharmthera.2005.12.005. [DOI] [PubMed] [Google Scholar]
- Yutin N., Wolf M.Y., Wolf Y.I., Koonin E.V. The origins of phagocytosis and eukaryogenesis. Biol Direct. 2009;4:9. doi: 10.1186/1745-6150-4-9. [DOI] [PMC free article] [PubMed] [Google Scholar]