Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2012 Aug 29;3(9):661–668. doi: 10.1007/s13238-012-2062-1

Sample preparation for the analysis of membrane proteomes by mass spectrometry

Xianchun Wang 1, Songping Liang 1,
PMCID: PMC4875374  PMID: 22926766

Abstract

The low abundance and highly hydrophobic nature of most membrane proteins make their analysis more difficult than that for common soluble proteins. Successful membrane protein identification is largely dependent on the sample preparation including the enrichment and dissolution of the membrane proteins. A series of conventional and newly developed methods has been applied to the enrichment of low-abundance membrane proteins at membrane and/or protein levels and to the dissolution of hydrophobic membrane proteins. However, all the existing methods have inherent advantages and limitations. Up to now, there has been no unique method that can universally be employed to solve all the problems and more efforts are needed in improving sample preparation for the analysis of membrane proteomes.

Keywords: sample preparation, membrane proteome, enrichment, extraction, digestion, mass spectrometry

References

  1. Andersen P., Heron I. Simultaneous electroelution of whole SDS-polyacrylamide gels for the direct cellular analysis of complex protein mixtures. J Immunol Methods. 1993;161:29–39. doi: 10.1016/0022-1759(93)90195-D. [DOI] [PubMed] [Google Scholar]
  2. Bartee E., McCormack A., Früh K. Quantitative membrane proteomics reveals new cellular targets of viral immune modulators. PLoS Pathog. 2006;2:975–988. doi: 10.1371/journal.ppat.0020107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bienvenut W.V., Sanchez J. C., Karmime A., Rouge V., Rose K., Binz P.A., Hochstrasser D.F. Toward a clinical molecular scanner for proteome research: parallel protein chemical processing before and during western blot. Anal Chem. 1999;71:4800–4807. doi: 10.1021/ac990448m. [DOI] [PubMed] [Google Scholar]
  4. Blonder J., Goshe M.B., Moore R.J., Pasa-Tolic L., Masselon C.D., Lipton M.S., Smith R.D. Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. J Proteome Res. 2002;1:351–360. doi: 10.1021/pr0255248. [DOI] [PubMed] [Google Scholar]
  5. Botelho D., Wall M.J., Vieira D.B., Fitzsimmons S., Liu F., Doucette A. Top-down and bottom-up proteomics of SDS-containing solutions following mass-based separation. J Proteome Res. 2010;9:2863–2870. doi: 10.1021/pr900949p. [DOI] [PubMed] [Google Scholar]
  6. Bunai K., Nozaki M., Hamano M., Ogane S. Proteomic analysis of acrylamide gel separated proteins immobilized on polyvinylidene difluoride membranes following proteolytic digestion in the presence of 80% acetonitrile. Proteomics. 2003;3:1738–1749. doi: 10.1002/pmic.200300529. [DOI] [PubMed] [Google Scholar]
  7. Cao R., Liu Y.S., Chen P., Lv R., Song Q., Sheng T.T., He Q.Y., Wang Y., Wang X.C., Liang S.P. Improvement of hydrophobic integral membrane protein identification by mild performic acid oxidation-assisted digestion. Anal Biochem. 2010;407:196–204. doi: 10.1016/j.ab.2010.08.020. [DOI] [PubMed] [Google Scholar]
  8. Cao R., Li X., Liu Z., Peng X., Hu W., Wang X., Chen P., Xie J., Liang S. Integration of a two-phase partition method into proteomics research on rat liver plasma membrane proteins. J Proteome Res. 2006;5:634–642. doi: 10.1021/pr050387a. [DOI] [PubMed] [Google Scholar]
  9. Eichacker L.A., Granvogl B., Mirus O., Muller B.C., Miess C., Schleiff E. Hiding behind hydrophobicity: transmembrane segments in mass spectrometry. J Biol Chem. 2004;279:50915–50922. doi: 10.1074/jbc.M405875200. [DOI] [PubMed] [Google Scholar]
  10. Finlayson A.J. The performic acid oxidation of egg-white lysozyme. Can J Bio Chem. 1969;47:31–37. doi: 10.1139/v69-003. [DOI] [PubMed] [Google Scholar]
  11. Fischer F., Wolters D., Rögner M., Poetsch A. Toward the complete membrane proteome: high coverage of integral membrane proteins through transmembrane peptide detection. Mol Cell Proteomics. 2006;5:444–453. doi: 10.1074/mcp.M500234-MCP200. [DOI] [PubMed] [Google Scholar]
  12. Hirs C.H.W. Performic acid oxidation. Methods Enzymol. 1967;11:197–199. doi: 10.1016/S0076-6879(67)11021-5. [DOI] [Google Scholar]
  13. Hudgin R.L., Ashwell G. Studies on the role of glycosyltransferases in the hepatic binding of asialoglycoproteins. J Biol Chem. 1974;249:7269–7272. [PubMed] [Google Scholar]
  14. Jonsson A.P., Aissouni Y., Palmberg C., Percipalle P., Percipalle P., Nordling E., Daneholt B., Jornvall H., Bergman T. Recovery of gel-separated proteins for in-solution digestion and mass spectrometry. Anal Chem. 2001;73:5370–5377. doi: 10.1021/ac010486h. [DOI] [PubMed] [Google Scholar]
  15. Liebler D.C., Ham A.J. Spin filter-based sample preparation for shotgun proteomics. Nat Methods. 2009;6:785. doi: 10.1038/nmeth1109-785a. [DOI] [PubMed] [Google Scholar]
  16. Lin Y., Liu H., Liu Z.H., Wang X.C., Liang S.P. Shotgun analysis of membrane proteomes using a novel combinative strategy of solution-based sample preparation coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;901:18–24. doi: 10.1016/j.jchromb.2012.05.035. [DOI] [PubMed] [Google Scholar]
  17. Lin Y., Liu Y., Li J.J., Zhao Y., He Q.Z., Han W.J., Chen P., Wang X.C., Liang S.P. Evaluation and optimization of removal of an acid-insoluble surfactant for shotgun analysis of membrane proteome. Electrophoresis. 2010;31:2705–2713. doi: 10.1002/elps.201000161. [DOI] [PubMed] [Google Scholar]
  18. Lin Y., Li Y., Liu Y., Han W.J., He Q.Z., Li J.L., Chen P., Wang X.C., Liang S.P. Improvement of gel-separated protein identification by DMF-assisted digestion and peptide recovery after electroblotting. Electrophoresis. 2009;30:3626–3635. doi: 10.1002/elps.200900070. [DOI] [PubMed] [Google Scholar]
  19. Lin Y., Zhou J., Bi D., Chen P., Wang X.C., Liang S.P. Sodium deoxycholate-assisted tryptic digestion and identification of proteolytically resistant proteins. Anal Biochem. 2008;377:259–266. doi: 10.1016/j.ab.2008.03.009. [DOI] [PubMed] [Google Scholar]
  20. Liu T., Martin A.M., Sinai A.P., Lynn B.C. Three-layer sandwich gel electrophoresis: a method of salt removal and protein concentration in proteome analysis. J Proteome Res. 2008;7:4256–4265. doi: 10.1021/pr800182b. [DOI] [PubMed] [Google Scholar]
  21. Liu Y., Lin Y., Yan Y.Z., Li J.L., He Q.Z., Chen P., Wang X.C., Liang S.P. Electrophoretically-driven SDS removal and protein fractionation in the shotgun analysis of membrane proteomes. Electrophoresis. 2012;33:316–324. doi: 10.1002/elps.201100364. [DOI] [PubMed] [Google Scholar]
  22. Li X., Jia X., Xie C., Lin Y., Cao R., He Q., Chen P., Wang X., Liang S. Development of cationic colloidal silica-coated magnetic nanospheres for highly selective and rapid enrichment of plasma membrane fractions for proteomics analysis. Biotechnol Appl Biochem. 2009;54:213–320. doi: 10.1042/BA20090187. [DOI] [PubMed] [Google Scholar]
  23. Luque-Garcia J.L., Zhou G., Spellman D.S., Sun T.T., Neubert T. A. Analysis of electroblotted proteins by mass spectrometry: protein identification after Western blotting. Mol Cell Proteomics. 2008;7:308–314. doi: 10.1074/mcp.M700415-MCP200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Luque-Garcia J.L., Zhou G., Sun T.T., Neubert T.A. Use of nitrocellulose membranes for protein characterization by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2006;78:5102–5108. doi: 10.1021/ac060344t. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lu X.N., Zhu H.N. Tube-gel digestion: a novel proteomic approach for high throughput analysis of membrane proteins. Mol Cell Proteomics. 2005;4:1948–1958. doi: 10.1074/mcp.M500138-MCP200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Manza L.L., Stamer S.L., Ham A.J.L., Codreanu S.G., Liebler D.C. Sample preparation and digestion for proteomic analyses using spin filters. Proteomics. 2005;5:1742–1745. doi: 10.1002/pmic.200401063. [DOI] [PubMed] [Google Scholar]
  27. Marmagne A., Rouet M.A., Ferro M., Rolland N., Alconm C., Joyard J., Garin J., Barbier-Brygoo H., Ephritikhine G. Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome. Mol Cell Proteomics. 2004;3:675–691. doi: 10.1074/mcp.M400001-MCP200. [DOI] [PubMed] [Google Scholar]
  28. Masuda T., Tomita M., Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res. 2008;7:731–740. doi: 10.1021/pr700658q. [DOI] [PubMed] [Google Scholar]
  29. Morré D.J., Morré D.M. Preparation of mammalian plasma membranes by aqueous two-phase partition. Biotechniques. 1989;7:946–948. [PubMed] [Google Scholar]
  30. Nielsen P. A., Olsen J.V., Podtelejnikov A.V., Andersen J.R., Mann M., Wiśniewski J.R. Proteomic mapping of brain plasma membrane proteins. Mol Cell Proteomics. 2005;4:402–408. doi: 10.1074/mcp.T500002-MCP200. [DOI] [PubMed] [Google Scholar]
  31. Pesavento J.J., Garcia B.A., Streeky J.A., Kelleher N.L., Mizzen C.A. Mild performic acid oxidation enhances chromatographic and top down mass spectrometric analyses of histones. Mol Cell Proteomics. 2007;6:1510–1526. doi: 10.1074/mcp.M600404-MCP200. [DOI] [PubMed] [Google Scholar]
  32. Puchades M., Westman A., Blennow K., Davidsson P. Removal of sodium dodecyl sulfate from protein samples prior to matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1999;13:344–349. doi: 10.1002/(SICI)1097-0231(19990315)13:5<344::AID-RCM489>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  33. Reinders J., Zahedi R.P., Pfanner N., Meisinger C., Sickmann A. Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res. 2006;5:1543–1554. doi: 10.1021/pr050477f. [DOI] [PubMed] [Google Scholar]
  34. Reynolds J.A., Tanford C. The gross conformation of protein-sodium dodecyl sulfate complexes. J Biol Chem. 1970;245:5161–5165. [PubMed] [Google Scholar]
  35. Schindler J., Lewandrowski U., Sickmann A., Friauf E. Proteomic analysis of brain plasma membrane isolated by affinity two-phase partitioning. Mol Cell Proteomics. 2006;5:390–400. doi: 10.1074/mcp.T500017-MCP200. [DOI] [PubMed] [Google Scholar]
  36. Schindler J., Nothwang H.G. Aqueous polymer two-phase systems: effective tools for plasma membrane proteomics. Proteomics. 2006;6:5409–5417. doi: 10.1002/pmic.200600243. [DOI] [PubMed] [Google Scholar]
  37. Speers A.E., Wu C.C. Proteomics of integral membrane proteins-theory and application. Chem Rev. 2007;107:3687–3714. doi: 10.1021/cr068286z. [DOI] [PubMed] [Google Scholar]
  38. Walter H., Walter H., Brooks D.E., Fisher D. Partitioning in aqueous two-phase systems: theory, methods, uses and applications to biotechnology. Orlando: Academic Press; 1985. p. 327. [Google Scholar]
  39. Washburn M.P., Wolters D., Yates J.R., III Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001;19:242–247. doi: 10.1038/85686. [DOI] [PubMed] [Google Scholar]
  40. Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. [DOI] [PubMed] [Google Scholar]
  41. Wu C.C., MacCoss M.J., Howell K.E., Yates J.R., 3rd A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol. 2003;21:532–538. doi: 10.1038/nbt819. [DOI] [PubMed] [Google Scholar]
  42. Xiong X., Huang S., Zhang H., Li J.J., Shen J.Y., Xiong J.X., Lin Y., Jiang L.P., Wang X.C., Liang S.P. Enrichment and proteomic analysis of plasma membrane from rat dorsal root ganglion neurons. Proteome Sci. 2009;7:41–50. doi: 10.1186/1477-5956-7-41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zhang L., Wang X., Peng X., Wei Y., Cao R., Liu Z., Xiong J., Ying X., Chen P., Liang S. Immunoaffinity purification of plasma membrane with secondary antibody superparamagnetic beads for proteomic analysis. J Proteome Res. 2007;6:34–43. doi: 10.1021/pr060069r. [DOI] [PubMed] [Google Scholar]
  44. Zhou J., Li J.L., Li J.J., Chen P., Wang X.C., Liang S.P. Dried polyacrylamide gel absorption: A method for efficient elimination of the interferences from SDS-solubilized protein samples in mass spectrometry-based proteome analysis. Electrophoresis. 2010;31:3816–3822. doi: 10.1002/elps.201000255. [DOI] [PubMed] [Google Scholar]
  45. Zhou J., Lin Y., Deng X.C., Shen J.Y., He Q.Y., Chen P., Wang X.C., Liang S.P. Development and application of a two-phase, on-membrane digestion method in the analysis of membrane proteome. J Proteome Res. 2008;7:1778–1783. doi: 10.1021/pr070526j. [DOI] [PubMed] [Google Scholar]
  46. Zhou J., Xiong J., Li J., Huang S., Zhang H., He Q., Lin Y., Chen P., Wang X., Liang S. Gel absorption-based sample preparation for the analysis of membrane proteome by mass spectrometry. Anal Biochem. 2010;404:204–210. doi: 10.1016/j.ab.2010.05.013. [DOI] [PubMed] [Google Scholar]
  47. Zhou J., Zhou T.Y., Cao R., Liu Z., Shen J.Y., Chen P., Wang X.C., Liang S.P. Evaluation of the application of sodium deoxycholate to proteomic analysis of rat hippocaampal plasma membrane. J Proteome Res. 2006;5:2547–2553. doi: 10.1021/pr060112a. [DOI] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES