Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2012 Jul 10;3(7):535–544. doi: 10.1007/s13238-012-2053-2

Curcumin induces differentiation of embryonic stem cells through possible modulation of nitric oxide-cyclic GMP pathway

Kalpana Mujoo 1,, Lubov E Nikonoff 1, Vladislav G Sharin 2, Nathan S Bryan 1, Alexander Y Kots 3, Ferid Murad 3
PMCID: PMC4875387  PMID: 22773343

Abstract

Curcumin, an active ingredient of dietary spice used in curry, has been shown to exhibit anti-oxidant, anti-inflammatory and anti-proliferative properties. Using EB directed differentiation protocol of H-9 human embryonic stem (ES) cells; we evaluated the effect of curcumin (0–20 μmol/L) in enhancing such differentiation. Our results using real time PCR, western blotting and immunostaining demonstrated that curcumin significantly increased the gene expression and protein levels of cardiac specific transcription factor NKx2.5, cardiac troponin I, myosin heavy chain, and endothelial nitric oxide synthase during ES cell differentiation. Furthermore, an NO donor enhanced the curcumin-mediated induction of NKx2.5 and other cardiac specific proteins. Incubation of cells with curcumin led to a dose dependent increase in intracellular nitrite to the same extent as giving an authentic NO donor. Functional assay for second messenger(s) cyclic AMP (cAMP) and cyclic GMP (cGMP) revealed that continuous presence of curcumin in differentiated cells induced a decrease in the baseline levels of cAMP but it significantly elevated baseline contents of cGMP. Curcumin addition to a cell free assay significantly suppressed cAMP and cGMP degradation in the extracts while long term treatment of intact cells with curcumin increased the rates of cAMP and cGMP degradation suggesting that this might be due to direct suppression of some cyclic nucleotide-degrading enzyme (phosphodiesterase) by curcumin. These studies demonstrate that polyphenol curcumin may be involved in differentiation of ES cells partly due to manipulation of nitric oxide signaling.

Keywords: curcumin, nitric oxide, cyclic GMP, embryonic stem cells

References

  1. Aggarwal B. B., Sung S. Pharmacological basis for the role of curcumin in chronic diseases: an age old spice with modern targets. Trend Pharmacol Sci. 2008;30:85–94. doi: 10.1016/j.tips.2008.11.002. [DOI] [PubMed] [Google Scholar]
  2. Aggarwal B.B., Sundaram C., Malani N., Ichikawa H. Curcumin: the Indian solid gold. Adv Exp Med Biol. 2007;595:1–75. doi: 10.1007/978-0-387-46401-5_1. [DOI] [PubMed] [Google Scholar]
  3. Bryan N.S., Grisham M.B. Methods to detect nitric oxide and its metabolites in biological samples. Free Rad Biol Med. 2007;43:645–657. doi: 10.1016/j.freeradbiomed.2007.04.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fang X.-D., Yang F. L., Zhu L., Shen Y.-L., Chen Y.-Y. Curcumin ameliorates high glucose-induced acute vascular endothelial dysfunction in rat thoracic aorta. Clin Expl Pharmacol Physiol. 2009;36:1177–1182. doi: 10.1111/j.1440-1681.2009.05210.x. [DOI] [PubMed] [Google Scholar]
  5. Goldstein B., Rogelj S., Siegel S., Farmer S.R., Niles R.M. Cyclic adenosine monophosphate-mediated induction of F9 teratocarcinoma differentiation in absence of retinoic acid. J Cell Physiol. 1990;143:205–212. doi: 10.1002/jcp.1041430202. [DOI] [PubMed] [Google Scholar]
  6. Kang S.-K., Cha S.-H., Jeon H.-G. Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Develop. 2006;15:165–174. doi: 10.1089/scd.2006.15.165. [DOI] [PubMed] [Google Scholar]
  7. Kim S. J., Son T.G., Park H.R., Park M., Kim M.-S., Kim H.-S., Chung H.Y., Mattson M.P., Lee J. Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem. 2008;283:14497–14505. doi: 10.1074/jbc.M708373200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kots A. Y., Choi B.-K., Estrella-Jimenez M.E., Warren C.A., Gilbertson S.R., Guerrant R.L., Murad F. Pyridopyrimidine derivatives as inhibitors of cyclic nucleotide synthesis: application for treatment of diarrhea. Procs Nat Acad Sci U S A. 2008;105:8440–8445. doi: 10.1073/pnas.0803096105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Krumenacker J.S., Katsuki S., Kots A.Y., Murad F. Differential expression of genes involved in cGMP-dependent nitric oxide signaling in murine embryonic stem (ES) cells and cell-derived cardiomyocytes. Nitric Oxide. 2006;14:1–11. doi: 10.1016/j.niox.2005.06.010. [DOI] [PubMed] [Google Scholar]
  10. Lin T., Chao C., Saito S., Mazur S.J., Murphy M.E., Appella E., Xu Y. p53 induces differentiation of mouse embryonic stem cells by suppressing nanog expression. Nature Cell Biol. 2005;7:165–171. doi: 10.1038/ncb1211. [DOI] [PubMed] [Google Scholar]
  11. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔC T method. Methods. 2001;25:25402–25408. doi: 10.1006/meth.2001.1262. [DOI] [PubMed] [Google Scholar]
  12. Lodha R., Bagga A. Traditional Indian systems of Medicine. Ann Acad Med Singapore. 2000;29:37–41. [PubMed] [Google Scholar]
  13. Morimoto T., Sunagawa Y., Kawamura T., Takaya T., Wada H., Nagasawa A., Komeda M., Fujita M., Shimatsu A., Kita T., Hasegawa K. The dietary compound curcumin inhibits p300 histone acetyl transferase activity and prevents heart failure in rats. J Clin Invest. 2008;118:868–878. doi: 10.1172/JCI33160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mujoo K., Krumenacker J.S., Wada Y., Murad F. Differential expression of nitric oxide signaling components in undifferentiated and differentiated human embryonic stem cells. Stem Cells Develop. 2006;15:779–787. doi: 10.1089/scd.2006.15.779. [DOI] [PubMed] [Google Scholar]
  15. Mujoo K., Sharin V.G., Bryan N.S., Krumenacker J.S., Sloan C., Parveen S., Kots A.Y., Murad F. Role of nitric oxide signaling components in differentiation of embryonic stem cells into myocardial cells. Proc Natl Acad Sci U S A. 2008;105:18924–18929. doi: 10.1073/pnas.0810230105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mujoo K., Krumenacker J.S., Murad F. Nitric oxide-cyclic GMP signaling in stem cell differentiation. Free Rad Bio Med. 2011;51:2150–2157. doi: 10.1016/j.freeradbiomed.2011.09.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Murad F. Shattuck Lecture. Nitric oxide and cyclic GMP in cell signaling and drug development. New Eng J Med. 2006;355:2003–2011. doi: 10.1056/NEJMsa063904. [DOI] [PubMed] [Google Scholar]
  18. Pan W., Quarles L.D., Song L.H., Yu Y.H., Jiao C., Tang H.B., Jiang C.H., Deng H.W., Li Y.J., Zhou H.H., Xiao Z.S. Genistein stimulates the osteoblastic differentiation via NO/cGMP in bone marrow culture. J Cell Biochem. 2005;94:307–316. doi: 10.1002/jcb.20308. [DOI] [PubMed] [Google Scholar]
  19. Sandur S.K., Ichikawa H., Pandey M.K., Kunnumakkara A.B., Sung S., Sethi G., Aggarwal B.B. Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloymethane) Free Rad Biol Med. 2007;43:568–580. doi: 10.1016/j.freeradbiomed.2007.05.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Singh S. From exotic spice to modern medicine. Cell. 2007;130:765–768. doi: 10.1016/j.cell.2007.08.024. [DOI] [PubMed] [Google Scholar]
  21. Singh S., Aggarwal B. B. Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane) J Biol Chem. 1995;270:24995–25000. doi: 10.1074/jbc.270.42.24995. [DOI] [PubMed] [Google Scholar]
  22. Sokoloski J.A., Hodnick W.F., Mayne S.T., Cinquina C., Kim C.S., Sartorelli A.C. Induction of differentiation of HL-60 promyelocytic leukemia cells by vitamin E and other antioxidants in combination with low levels of low levels of vitamin D3: Possible relationship to NF-kappa B. Leukemia. 1997;11:1546–1553. doi: 10.1038/sj.leu.2400786. [DOI] [PubMed] [Google Scholar]
  23. Thaloor D., Singh A.K., Sidhu G.S., Prasad P.V., Kleinman H.K., Maheshwari R.K. Inhibition of antigenic differentiation of human umbilical vein endothelial cells by curcumin. Cell Growth Differ. 1998;9:305–312. [PubMed] [Google Scholar]
  24. Thaloor D., Miller K.J., Gephart J., Mitchell P.O., Pavlath G.K. Systemic administration of the NF-kappa B inhibitor curcumin stimulates muscle regeneration after traumatic injury. Amer J Physiol. 1999;277:C320–C329. doi: 10.1152/ajpcell.1999.277.2.C320. [DOI] [PubMed] [Google Scholar]
  25. Xu P.-H., Long Y., Dai F., Liu Z.-L. The relaxant effect of curcumin on porcine coronary arterial ring segments. Vascular Biol. 2007;47:25–30. doi: 10.1016/j.vph.2007.03.003. [DOI] [PubMed] [Google Scholar]
  26. Yang X. A new role of p53 in maintaining genetic stability in embryonic stem cells. Cell Cycle. 2005;4:363–364. doi: 10.4161/cc.4.3.1529. [DOI] [PubMed] [Google Scholar]
  27. Zhu D.Y., Lou Y.J. Icariin-mediated expression of cardiac genes and modulation of nitric oxide signaling pathway during differentiation of mouse embryonic stem cells into cardiomyocytes in vitro. Acta Pharmacol Sin. 2006;27:311–320. doi: 10.1111/j.1745-7254.2006.00275.x. [DOI] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES