Abstract
The complement system is a key component of innate immunity. More than 45 genes encoding the proteins of complement components or their isotypes and subunits, receptors, and regulators have been discovered. These genes are distributed throughout different chromosomes, with 19 genes comprising three significant complement gene clusters in the human genome. Genetic deficiency of any early component of the classical pathway (C1q, C1r/s, C2, C4, and C3) is associated with autoimmune diseases due to the failure of clearance of immune complexes (IC) and apoptotic materials, and the impairment of normal humoral response. Deficiencies of mannan-binding lectin (MBL) and the early components of the alternative (factor D, properdin) and terminal pathways (from C3 onward components: C5, C6, C7, C8, C9) increase susceptibility to infections and their recurrence. While the association of MBL deficiency with a number of autoimmune and infectious disorders has been well established, the effects of the deficiency of other lectin pathway components (ficolins, MASPs) have been less extensively investigated due to our incomplete knowledge of the genetic background of such deficiencies and the functional activity of those components. For complement regulators and receptors, the consequences of their genetic deficiency vary depending on their specific involvement in the regulatory or signalling steps within the complement cascade and beyond. This article reviews current knowledge and concepts about the genetic load of complement component deficiencies and their association with diseases. An integrative presentation of genetic data with the latest updates provides a background to further investigations of the disease association investigations of the complement system from the perspective of systems biology and systems genetics.
Keywords: complement system, deficiency, disease association, HLA-III, RCA
References
- Agnello V., De Bracco M.M., Kunkel H.G. Hereditary C2 deficiency with some manifestations of systemic lupus erythematosus. J Immunol. 1972;108:837–840. [PubMed] [Google Scholar]
- Alper C.A., Propp R.P. Genetic polymorphism of the third component of human complement (C’3) J Clin Invest. 1968;47:2181–2191. doi: 10.1172/JCI105904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Azen E.A., Smithis O. Genetic polymorphism of C’3(beta1C-globulin) in human serum. Science. 1968;162:905–907. doi: 10.1126/science.162.3856.905. [DOI] [PubMed] [Google Scholar]
- Bernard Cher T.H., Chan H.S., Klein G.F., Jabkowski J., Schadenböck-Kranzl G., Zach O., Roca X., Law S.K. A novel 30 splice-site mutation and a novel gross deletion in leukocyte adhesion deficiency (LAD)-1. Biochem Biophys Res Commun. 2011;404:1099–1104. doi: 10.1016/j.bbrc.2010.12.124. [DOI] [PubMed] [Google Scholar]
- Blanchong C.A., Chung E.K., Rupert K.L., Yang Y., Yang Z., Zhou B., Moulds J.M., Yu C.Y. Genetic, structural and functional diversities of human complement components C4A and C4B and their mouse homologues, Slp and C4. Int Immunopharmacol. 2001;1:365–392. doi: 10.1016/S1567-5769(01)00019-4. [DOI] [PubMed] [Google Scholar]
- Bracho F.A. Hereditary angioedema. Curr Opin Hematol. 2005;12:493–498. doi: 10.1097/01.moo.0000179805.57486.4e. [DOI] [PubMed] [Google Scholar]
- Butko P., Nicholson-Weller A., Wessels M.R. Role of complement component C1q in the IgG-independent opsonophagocytosis of group B streptococcus. J Immunol. 1999;163:2761–2768. [PubMed] [Google Scholar]
- Carroll M.C. The complement system in regulation of adaptive immunity. Nat Immunol. 2004;5:981–986. doi: 10.1038/ni1113. [DOI] [PubMed] [Google Scholar]
- Cortes A., Brown M.A. Promise and pitfalls of the Immunochip. Arthritis Res Ther. 2011;13:101. doi: 10.1186/ar3204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahl M., Tybjaerg-Hansen A., Schnohr P., Nordestgaard B.G. A population-based study of morbidity and mortality in mannose-binding lectin deficiency. J Exp Med. 2004;199:1391–1399. doi: 10.1084/jem.20040111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies E.J., The L.S., Ordi-Ros J., Snowden N., Hillarby M.C., Hajeer A., Donn R., Perez-Pemen P., Vilardell-Tarres M., Ollier W.E. A dysfunctional allele of the mannose binding protein gene associates with systemic lupus erythematosus in a Spanish population. J Rheumatol. 1997;24:485–488. [PubMed] [Google Scholar]
- Day N.K., Geiger H., McLean R., Michael A., Good R.A. C2 deficiency. Development of lupus erythematosus. J Clin Invest. 1973;52:1601–1607. doi: 10.1172/JCI107337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Degn S.E., Jensenius J.C., Thiel S. Disease-causing mutations in genes of the complement system. Am J Hum Genet. 2011;88:689–705. doi: 10.1016/j.ajhg.2011.05.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Endo Y., Takahashi M., Fujita T. Lectin complement system and pattern recognition. Immunobiol. 2006;211:283. doi: 10.1016/j.imbio.2006.01.003. [DOI] [PubMed] [Google Scholar]
- Figueroa J.E., Densen P. Infectious diseases associated with complement deficiencies. Clin Microbiol Rev. 1991;4:359–395. doi: 10.1128/cmr.4.3.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia-Laorden M.I., Sole-Violan J., Rodriguez de Castro F., Aspa J., Briones M.L., Garcia-Saavedra A., Rajas O., Blanquer J., Caballero-Hidalgo A., Marcos-Ramos J.A., et al. Mannose-binding lectin and mannose-binding lectin-associated serine protease 2 in susceptibility, severity, and outcome of pneumonia in adults. Allergy Clin Immunol. 2008;122:368–374. doi: 10.1016/j.jaci.2008.05.037. [DOI] [PubMed] [Google Scholar]
- Garred P., Honoré C., Ma Y.J., Rørvig S., Cowland J., Borregaard N., Hummelshøj T. The genetics of ficolins. J Innate Immun. 2010;2:3–16. doi: 10.1159/000242419. [DOI] [PubMed] [Google Scholar]
- Garred P., Madsen H.O., Hofmann B., Svejgaard A. Increased frequency of homozygosity of abnormal mannan-binding-protein alleles in patients with suspected immunodeficiency. Lancet. 1995;346:941–943. doi: 10.1016/S0140-6736(95)91559-1. [DOI] [PubMed] [Google Scholar]
- Gerard N.P., Gerard C. The chemotactic receptor for human C5a anaphylatoxin. Nature. 1991;349:614–617. doi: 10.1038/349614a0. [DOI] [PubMed] [Google Scholar]
- Glesse N., Monticielo O.A., Mattevi V.S., Brenol J.C., Xavier R.M., da Silva G.K., Dos Santos B.P., Rucatti G.G., Chies J.A. Association of mannose-binding lectin 2 gene polymorphic variants with susceptibility and clinical progression in systemic lupus erythematosus. Clin Exp Rheumatol. 2011;29:983–990. [PubMed] [Google Scholar]
- Graudal N.A., Homann C., Madsen H.O., Svejgaard A., Jurik A.G., Graudal H.K., Garred P. Mannan binding lectin in rheumatoid arthritis. A longitudinal study. J Rheumatol. 1998;25:629–635. [PubMed] [Google Scholar]
- Heitzeneder S., Seidel M., Förster-Waldl E., Heitger A. Mannan-binding lectin deficiency - Good news, bad news, doesn’t matter? Clin Immunol. 2012;143:22–38. doi: 10.1016/j.clim.2011.11.002. [DOI] [PubMed] [Google Scholar]
- Hohler T., Stradmann-Bellinghausen B., Starke R., Sanger R., Victor A., Rittner C., Schneider P.M. C4A deficiency and nonresponse to hepatitis B vaccination. J Hepatol. 2002;37:387–392. doi: 10.1016/S0168-8278(02)00205-2. [DOI] [PubMed] [Google Scholar]
- Imbasciati E., Bucci R., Barbisoni F., Borlandelli S., Corradi B., Cosci P., Farina M., Mandolfo S. Acute renal failure and thrombotic microangiopathy. G Ital Nefrol. 2003;20:285–297. [PubMed] [Google Scholar]
- Karp C.L., Wysocka M., Wahl L.M., Ahearn J.M., Cuomo P.J., Sherry B., Trinchieri G., Griffin D.E. Mechanism of suppression of cell-mediated immunity by measles virus. Science. 1996;273:228–231. doi: 10.1126/science.273.5272.228. [DOI] [PubMed] [Google Scholar]
- Krarup A., Sorensen U.B., Matsushita M., Jensenius J.C., Thiel S. Effect of capsulation of opportunistic pathogenic bacteria on binding of the pattern recognition molecules mannan-binding lectin, L-ficolin, and H-ficolin. Infect Immun. 2005;73:1052–1060. doi: 10.1128/IAI.73.2.1052-1060.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kraus D.M., Elliott G.S., Chute H., Horan T., Pfenninger K.H., Sanford S.D., Foster S., Scully S., Welcher A.A., Holers V.M. CSMD1 is a novel multiple domain complement-regulatory protein highly expressed in the central nervous system and epithelial tissues. J Immunol. 2006;176:4419–4430. doi: 10.4049/jimmunol.176.7.4419. [DOI] [PubMed] [Google Scholar]
- Laich A., Sim R.B. Cross-talk between the human complement classical and alternative pathways: evidence for a C4bBb ‘hybrid’ C3 convertase. Mol Immunol. 2001;38:105. [Google Scholar]
- Langer H.F., Chung K.J., Orlova V.V., Choi E.Y., Kaul S., Kruhlak M.J., Alatsatianos M., Deangelis R.A., Roche P.A., Magotti P., et al. Complement-mediated inhibition of neovascularization reveals a point of convergence between innate immunity and angiogenesis. Blood. 2010;116:4395–4403. doi: 10.1182/blood-2010-01-261503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Law S.K.A., Reid K.B.M. Complement. Oxford: IRL Press at Oxford University Press; 1995. [Google Scholar]
- Linton S. Animal models of inherited complement deficiency. Mol Biotechnol. 2001;18:135–148. doi: 10.1385/MB:18:2:135. [DOI] [PubMed] [Google Scholar]
- Martiny F.L., Veit T.D., Brenol C.V., Brenol J.C., Xavier R.M., Bogo M.R., Chies J.A. Mannose-binding lectin gene polymorphisms in Brazilian patients with rheumatoid arthritis. J Rheumatol. 2012;39:6–9. doi: 10.3899/jrheum.110052. [DOI] [PubMed] [Google Scholar]
- Mayilyan K.R., Kang Y.H., Dodds A.W., Sim R.B. The complement system in innate immunity. In: Heine H., editor. In Innate Immunity of Plants, Animals and Humans. Heidelberg: Springer; 2008. pp. 219–236. [Google Scholar]
- Mayilyan, K.R., Schneider, P.M., Hartmann, A., Hähnel, P.S., Stradmann-Bellinghausen, B., Möller, H.J., Soghoyan, A.F., Rujescu, D., and Sim, R.B. (2012). Complement C4 genes in schizophrenia: a study using a new genotyping approach to RP-C4-CYP21-TNX unit screening (in press).
- Mayilyan K.R., Weinberger D.R. Involvement of the HLA genetic diversity in schizophrenia: supporting data and perspectives. ASHI Quarterly (The American Society of Histocompatibility and Immunogenetics) 2008;32:74–80. [Google Scholar]
- Mayilyan, K.R., Weinberger, D.R., Wu, Y.L., Kolachana, B., McBride, K., and Yung, C.Y. (2007). Association of complement C4B gene deficiency with schizophrenia: studies of European American families and controls. Abstracts of XV World Congress on Psychiatric Genetics, 7–11 October, 2007, New York, NY, USA, P109.
- Munthe-Fog L., Hummelshøj T., Honoré C., Madsen H.O., Permin H., Garred P. Immunodeficiency associated with FCN3 mutation and ficolin-3 deficiency. N Engl J Med. 2009;360:2637–2644. doi: 10.1056/NEJMoa0900381. [DOI] [PubMed] [Google Scholar]
- Nagase T., Kikuno R., Ohara O. Prediction of the coding sequences of unidentified human genes. XXI. The complete sequences of 60 new cDNA clones from brain which code for large proteins. DNA Res. 2001;8:179–187. doi: 10.1093/dnares/8.4.179. [DOI] [PubMed] [Google Scholar]
- Ohi H., Ikezawa T., Watanabe S., Seki M., Mizutani Y., Nawa N., Hatano M. Two cases of mesangiocapillary glomerulonephritis with CR1 deficiency. Nephron. 1986;43:307. doi: 10.1159/000183861. [DOI] [PubMed] [Google Scholar]
- Petersen S.V., Thiel S., Jensenius J.C. The mannan-binding lectin pathway of complement activation: biology and disease association. Mol Immunol. 2001;38:133–149. doi: 10.1016/S0161-5890(01)00038-4. [DOI] [PubMed] [Google Scholar]
- Pickering M.C., Botto M., Taylor P.R., Lachmann P.J., Walport M.J. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol. 2000;76:227–324. doi: 10.1016/S0065-2776(01)76021-X. [DOI] [PubMed] [Google Scholar]
- Rahpeymai Y., Hietala M.A., Wilhelmsson U., Fotheringham A., Davies I., Nilsson A.K., Zwirner J., Wetsel R.A., Gerard C., Pekny M., et al. Complement: a novel factor in basal and ischemia-induced neurogenesis. EMBO J. 2006;25:1364–1374. doi: 10.1038/sj.emboj.7601004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reid K.B.M., Bentley D.R., Campbell R.D., Chung L.P., Sim R.B., Kristensen T., Tack B.F. Complement-system proteins which interact with C3B or C4B - A superfamily of structurally related proteins. Immunol Today. 1986;7:230–234. doi: 10.1016/0167-5699(86)90110-6. [DOI] [PubMed] [Google Scholar]
- Reis S.E., Falcao D.A., Isaac L. Clinical aspects and molecular basis of primary deficiencies of complement component C3 and its regulatory proteins factor I and factor H. Scand J Immunol. 2006;63:155–168. doi: 10.1111/j.1365-3083.2006.01729.x. [DOI] [PubMed] [Google Scholar]
- Ricklin D., Hajishengallis G., Yang K., Lambris J.D. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11:785–797. doi: 10.1038/ni.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roos D., Meischl C., de Boer M., Simsek S., Weening R.S., Sanal O., Tezcan I., Güngör T., Law S.K. Genetic analysis of patients with leukocyte adhesion deficiency: genomic sequencing reveals otherwise undetectable mutations. Exp Hematol. 2002;30:252–261. doi: 10.1016/S0301-472X(01)00782-2. [DOI] [PubMed] [Google Scholar]
- Schneider P.M., Witzel-Schlömp K., Rittner C., Zhang L. The endogenous retroviral insertion in the human complement C4 gene modulates the expression of homologous genes by antisense inhibition. Immunogenetics. 2001;53:1–9. doi: 10.1007/s002510000288. [DOI] [PubMed] [Google Scholar]
- Schneider P.M., Wurzner R. genetics: biological implications of polymorphisms and deficiencies. Immunol Today. 1999;20:2–5. doi: 10.1016/S0167-5699(98)01375-9. [DOI] [PubMed] [Google Scholar]
- Sim R.B., Malhotra R. Interactions of carbohydrates and lectins with complement. Biochem Soc Trans. 1994;22:106–111. doi: 10.1042/bst0220106. [DOI] [PubMed] [Google Scholar]
- Sim R.B., Clark H., Hajela K., Mayilyan K.R. Collectins and host defence. Novartis Found Symp. 2006;279:170–181. doi: 10.1002/9780470035399.ch14. [DOI] [PubMed] [Google Scholar]
- Sim R.B., Moffatt B.E., Shaw J.M., Ferluga J. Complement control proteins and receptors: from FH to CR4. In: Reid K.B.M., Sim R.B., editors. In Molecular Aspects of Innate and Adaptive Immunity. Cambridge, UK: RSC Publishing; 2008. pp. 84–104. [Google Scholar]
- Sjoholm A.G. Deficiencies of mannan-binding lectin, the alternative pathway, and the late complement components. In: Rose N.R., Hamilton R.G., Detrick B., editors. In Manual of Clinical Laboratory Immunology. 6th ed. Washington, DC: ASM Press; 2002. pp. 847–854. [Google Scholar]
- Sjoholm A.G., Jonsson G., Braconier J.H., Sturfelt G., Truedsson L. Complement deficiency and disease: an update. Mol Immunol. 2006;43:78–85. doi: 10.1016/j.molimm.2005.06.025. [DOI] [PubMed] [Google Scholar]
- Skerka C., Lauer N., Weinberger A.A., Keilhauer C.N., Sühnel J., Smith R., Schlötzer-Schrehardt U., Fritsche L., Heinen S., Hartmann A., et al. Defective complement control of factor H (Y402H) and FHL-1 in age-related macular degeneration. Mol Immuno. 2007;44:3398–3406. doi: 10.1016/j.molimm.2007.02.012. [DOI] [PubMed] [Google Scholar]
- Springer T.A., Thompson W.S., Miller L.J., Schmalstieg F.C., Anderson D.C. Inherited deficiency of the Mac-1, LFA-1, p150,95 glycoprotein family and its molecular basis. J Exp Med. 1984;160:1901–1918. doi: 10.1084/jem.160.6.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Springer T.A., Miller L.J., Anderson D.C. p150,95, the third member of the Mac-1, LFA-1 human leukocyte adhesion glycoprotein family. J Immun. 1986;136:240–245. [PubMed] [Google Scholar]
- Stengaard-Pedersen K., Thiel S., Gadjeva M., Moller-Kristensen M., Sorensen R., Jensen L.T., Sjoholm A.G., Fugger L., Jensenius J.C. Inherited deficiency of mannan-binding lectin-associated serine protease 2. N Engl J Med. 2003;349:554–560. doi: 10.1056/NEJMoa022836. [DOI] [PubMed] [Google Scholar]
- Stevens B., Allen N.J., Vazquez L.E., Howell G.R., Christopherson K.S., Nouri N., Micheva D., Mehalow A.K., Huberman A.D., Stafford B., et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131:1164–1178. doi: 10.1016/j.cell.2007.10.036. [DOI] [PubMed] [Google Scholar]
- Sullivan K.E., Wooten C., Goldman D., Petri M. Mannose-binding protein genetic polymorphisms in black patients with systemic lupus erythematosus. Arthritis Rheum. 1996;39:2046–2051. doi: 10.1002/art.1780391214. [DOI] [PubMed] [Google Scholar]
- Sumiya M., Super M., Tabona P., Levinsky R.J., Arai T., Turner M.W., Summerfield J.A. Molecular basis of opsonic defect in immunodeficient children. Lancet. 1991;337:1569–1570. doi: 10.1016/0140-6736(91)93263-9. [DOI] [PubMed] [Google Scholar]
- Summerfield J.A., Sumiya M., Levin M., Turner M.W. Association of mutations in mannose binding protein gene with childhood infection in consecutive hospital series. BMJ. 1997;314:1229–1232. doi: 10.1136/bmj.314.7089.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Super M., Thiel S., Lu J., Levinsky R.J., Turner M.W. Association of low levelsn of mannan-binding protein with a common defect of opsonisation. Lancet. 1989;2:1236–1239. doi: 10.1016/S0140-6736(89)91849-7. [DOI] [PubMed] [Google Scholar]
- Takeda J., Miyata T., Kawagoe K., Iida Y., Endo Y., Fujita T., Takahashi M., Kitani T., Kinoshita T. Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell. 1993;73:703–711. doi: 10.1016/0092-8674(93)90250-T. [DOI] [PubMed] [Google Scholar]
- Tarr J., Eggleton P. Immune function of C1q and its modulators CD91 and CD93. Crit Rev Immunol. 2005;25:305–330. doi: 10.1615/CritRevImmunol.v25.i4.40. [DOI] [PubMed] [Google Scholar]
- Turner M.W. The role of mannose-binding lectin in health and disease. Mol Immunol. 2003;40:423–429. doi: 10.1016/S0161-5890(03)00155-X. [DOI] [PubMed] [Google Scholar]
- Turner M.W., Hamvas R.M. Mannose-binding lectin: structure, function, genetics and disease associations. Rev Immunogenet. 2000;2:305–322. [PubMed] [Google Scholar]
- Vorup-Jensen T., Petersen S.V., Hansen A.G., Poulsen K., Schwaeble W., Sim R.B., Reid K.B., Davis S.J., Thiel S., Jensenius J.C. Distinct pathways of mannan-binding lectin (MBL)- and C1-complex autoactivation revealed by reconstitution of MBL with recombinant MBL-associated serine protease- 2. J. Immunology. 2000;165:2093–2100. doi: 10.4049/jimmunol.165.4.2093. [DOI] [PubMed] [Google Scholar]
- Yang Y., Chung E.K., Zhou B., Lhotta K., Hebert L.A., Birmingham D.J., Rovin B.H., Yu C.Y. The intricate role of complement component C4 in human systemic lupus erythematosus. Curr Dir Autoimmun. 2004;7:98–132. doi: 10.1159/000075689. [DOI] [PubMed] [Google Scholar]
- Yang Z., Mendoza A.R., Welch T.R., Zipf W.B., Yu C.Y. Modular variations of the human major histocompatibility complex class III genes for serine/threonine kinase RP, complement component C4, steroid 21-hydroxylase CYP21, and tenascin TNX (the RCCX module). A mechanism for gene deletions and disease associations. J Biol Chem. 1999;274:12147–12156. doi: 10.1074/jbc.274.17.12147. [DOI] [PubMed] [Google Scholar]
- Yu C.Y., Chung E.K., Yang Y., Blanchong C.A., Jacobsen N., Saxena K., Yang Z., Miller W., Varga L., Fust G. Dancing with complement C4 and the RP-C4-CYP21-TNX (RCCX) modules of the major histocompatibility complex. Prog Nucleic Acid Res Mol Biol. 2003;75:217–292. doi: 10.1016/S0079-6603(03)75007-7. [DOI] [PubMed] [Google Scholar]
