Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2012 Jun 3;3(7):521–525. doi: 10.1007/s13238-012-2937-1

Ultra-structural study of insulin granules in pancreatic β-cells of db/db mouse by scanning transmission electron microscopy tomography

Yanhong Xue 1, Wei Zhao 1, Wen Du 1, Xiang Zhang 1, Gang Ji 1, Wang Ying 1, Tao Xu 1,2,
PMCID: PMC4875393  PMID: 22773341

Abstract

Insulin granule trafficking is a key step in the secretion of glucose-stimulated insulin from pancreatic β-cells. The main feature of type 2 diabetes (T2D) is the failure of pancreatic β-cells to secrete sufficient amounts of insulin to maintain normal blood glucose levels. In this work, we developed and applied tomography based on scanning transmission electron microscopy (STEM) to image intact insulin granules in the β-cells of mouse pancreatic islets. Using three-dimensional (3D) reconstruction, we found decreases in both the number and the grey level of insulin granules in db/db mouse pancreatic β-cells. Moreover, insulin granules were closer to the plasma membrane in diabetic β-cells than in control cells. Thus, 3D ultra-structural tomography may provide new insights into the pathology of insulin secretion in T2D.

Electronic Supplementary Material

The online version of this article (doi:10.1007/s13238-012-2937-1 contains supplementary material, which is available to authorized users.

Keywords: insulin, secretory granule, diabetes, stem, tomography, 3D reconstruction

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Movie 1(AVI 1288 kb) (1.3MB, avi)
Movie 2(AVI 1601 kb) (1.6MB, avi)

Footnotes

Electronic Supplementary Material

The online version of this article (doi:10.1007/s13238-012-2937-1 contains supplementary material, which is available to authorized users.

References

  1. Barg S., Eliasson L., Renstrom E., Rorsman P. A subset of 50 secretory granules in close contact with L-type Ca2+ channels accounts for first-phase insulin secretion in mouse beta-cells. Diabetes. 2002;51(Suppl1):S74–82. doi: 10.2337/diabetes.51.2007.S74. [DOI] [PubMed] [Google Scholar]
  2. Boquist L., Hellman B., Lernmark A., Taljedal I.B. Influence of the mutation “diabetes” on insulin release and islet morphology in mice of different genetic backgrounds. J Cell Biol. 1974;62:77–89. doi: 10.1083/jcb.62.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dean P.M. Ultrastructural morphometry of the pancreatic-cell. Diabetologia. 1973;9:115–119. doi: 10.1007/BF01230690. [DOI] [PubMed] [Google Scholar]
  4. Diani A.R., Peterson T., Sawada G.A., Wyse B.M., Gilchrist B.J., Hearron A.E., Chang A.Y. Ciglitazone, a new hypoglycaemic agent. 4. Effect on pancreatic islets of C57BL/6J-ob/ob and C57BL/KsJ-db/db mice. Diabetologia. 1984;27:225–234. doi: 10.1007/BF00273811. [DOI] [PubMed] [Google Scholar]
  5. Leiter E.H., Coleman D.L., Eppig J.J. Endocrine pancreatic cells of postnatal “diabetes” (db) mice in cell culture. In Vitro. 1979;15:507–521. doi: 10.1007/BF02618153. [DOI] [PubMed] [Google Scholar]
  6. Nagamatsu S., Nakamichi Y., Yamamura C., Matsushima S., Watanabe T., Ozawa S., Furukawa H., Ishida H. Decreased expression of t-SNARE, syntaxin 1, and SNAP-25 in pancreatic beta-cells is involved in impaired insulin secretion from diabetic GK rat islets: restoration of decreased t-SNARE proteins improves impaired insulin secretion. Diabetes. 1999;48:2367–2373. doi: 10.2337/diabetes.48.12.2367. [DOI] [PubMed] [Google Scholar]
  7. Nakamura M., Kitamura H., Konishi S., Nishimura M., Ono J., Ina K., Shimada T., Takaki R. The endocrine pancreas of spontaneously diabetic db/db mice: microangiopathy as revealed by transmission electron microscopy. Diabetes Res Clin Pract. 1995;30:89–100. doi: 10.1016/0168-8227(95)01155-2. [DOI] [PubMed] [Google Scholar]
  8. Olofsson C.S., Gopel S.O., Barg S., Galvanovskis J., Ma X., Salehi A., Rorsman P., Eliasson L. Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells. Pflugers Arch. 2002;444:43–51. doi: 10.1007/s00424-002-0781-5. [DOI] [PubMed] [Google Scholar]
  9. Ostenson C.G., Gaisano H., Sheu L., Tibell A., Bartfai T. Impaired gene and protein expression of exocytotic soluble N-ethylmaleimide attachment protein receptor complex proteins in pancreatic islets of type 2 diabetic patients. Diabetes. 2006;55:435–440. doi: 10.2337/diabetes.55.02.06.db04-1575. [DOI] [PubMed] [Google Scholar]
  10. Ostenson C.G., Khan A., Abdel-Halim S.M., Guenifi A., Suzuki K., Goto Y., Efendic S. Abnormal insulin secretion and glucose metabolism in pancreatic islets from the spontaneously diabetic GK rat. Diabetologia. 1993;36:3–8. doi: 10.1007/BF00399086. [DOI] [PubMed] [Google Scholar]
  11. Porter A.E., Gass M., Muller K., Skepper J.N., Midgley P.A., Welland M. Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol. 2007;2:713–717. doi: 10.1038/nnano.2007.347. [DOI] [PubMed] [Google Scholar]
  12. Porter A.E., Muller K., Skepper J., Midgley P., Welland M. Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: studied by high resolution electron microscopy and electron tomography. Acta Biomater. 2006;2:409–419. doi: 10.1016/j.actbio.2006.02.006. [DOI] [PubMed] [Google Scholar]
  13. Portha B., Giroix M.H., Serradas P., Welsh N., Hellerstrom C., Sener A., Malaisse W.J. Insulin production and glucose metabolism in isolated pancreatic islets of rats with NIDDM. Diabetes. 1988;37:1226–1233. doi: 10.2337/diab.37.9.1226. [DOI] [PubMed] [Google Scholar]
  14. Rorsman P., Eliasson L., Renstrom E., Gromada J., Barg S., Gopel S. The Cell Physiology of Biphasic Insulin Secretion. News Physiol Sci. 2000;15:72–77. doi: 10.1152/physiologyonline.2000.15.2.72. [DOI] [PubMed] [Google Scholar]
  15. Rorsman P., Renstrom E. Insulin granule dynamics in pancreatic beta cells. Diabetologia. 2003;46:1029–1045. doi: 10.1007/s00125-003-1153-1. [DOI] [PubMed] [Google Scholar]
  16. Sougrat R., Bartesaghi A., Lifson J.D., Bennett A.E., Bess J.W., Zabransky D.J., Subramaniam S. Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry. PLoS Pathog. 2007;3:e63. doi: 10.1371/journal.ppat.0030063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Suckale J., Solimena M. Pancreas islets in metabolic signaling—focus on the beta-cell. Front Biosci. 2008;13:7156–7171. doi: 10.2741/3218. [DOI] [PubMed] [Google Scholar]
  18. Suckale J., Solimena M. The insulin secretory granule as a signaling hub. Trends Endocrinol Metab. 2010;21:599–609. doi: 10.1016/j.tem.2010.06.003. [DOI] [PubMed] [Google Scholar]
  19. Yakushevska A.E., Lebbink M.N., Geerts W.J., Spek L., van Donselaar E.G., Jansen K.A., Humbel B.M., Post J.A., Verkleij A.J., Koster A.J. STEM tomography in cell biology. J Struct Biol. 2007;159:381–391. doi: 10.1016/j.jsb.2007.04.006. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Movie 1(AVI 1288 kb) (1.3MB, avi)
Movie 2(AVI 1601 kb) (1.6MB, avi)

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES