Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2012 Mar 17;3(2):84–88. doi: 10.1007/s13238-012-2012-y

Emerging technology of in situ cell free expression protein microarrays

Amita Nand 1, Anju Gautam 2, Javier Batista Pérez 1, Alejandro Merino 1, Jinsong Zhu 1,
PMCID: PMC4875412  PMID: 22426976

Abstract

Recently, in situ protein microarrays have been developed for large scale analysis and high throughput studies of proteins. In situ protein microarrays produce proteins directly on the solid surface from pre-arrayed DNA or RNA. The advances in in situ protein microarrays are exemplified by the ease of cDNA cloning and cell free protein expression. These technologies can evaluate, validate and monitor protein in a cost effective manner and address the issue of a high quality protein supply to use in the array. Here we review the importance of recently employed methods: PISA (protein in situ array), DAPA (DNA array to protein array), NAPPA (nucleic acid programmable protein array) and TUSTER microarrays and the role of these methods in proteomics.

Footnotes

An erratum to this article can be found at http://dx.doi.org/10.1007/s13238-012-2803-1.

References

  1. Anderson K.S., Sibani S., Wallstrom G., Qiu J., Mendoza E.A., Raphael J., Hainsworth E., Montor W.R., Wong J., Park J.G., et al. Protein microarray signature of autoantibody biomarkers for the early detection of breast cancer. J Proteome Res. 2011;10:85–96. doi: 10.1021/pr100686b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bundy B.C., Swartz J.R. Efficient disulfide bond formation in virus-like particles. J Biotechnol. 2011;154:230–239. doi: 10.1016/j.jbiotec.2011.04.011. [DOI] [PubMed] [Google Scholar]
  3. Carlson, E.D., Gan, R., Hodgman, C.E., and Jewett, M.C. (2011). Cell-free protein synthesis: Applications come of age. Biotechnol Adv 2011 Oct 8. [Epub ahead of print]. [DOI] [PMC free article] [PubMed]
  4. Chatterjee D.K., Sitaraman K., Baptista C., Hartley J., Hill T.M., Munroe D.J. Protein microarray on-demand: a novel protein microarray system. PLoS One. 2008;3:e3265. doi: 10.1371/journal.pone.0003265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chatterjee M., Mohapatra S., Ionan A., Bawa G., Ali-Fehmi R., Wang X., Nowak J., Ye B., Nahhas F.A., Lu K., et al. Diagnostic markers of ovarian cancer by high-throughput antigen cloning and detection on arrays. Cancer Res. 2006;66:1181–1190. doi: 10.1158/0008-5472.CAN-04-2962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ekins R.P. Multi-analyte immunoassay. J Pharm Biomed Anal. 1989;7:155–168. doi: 10.1016/0731-7085(89)80079-2. [DOI] [PubMed] [Google Scholar]
  7. Endoh T., Kanai T., Sato Y.T., Liu D.V., Yoshikawa K., Atomi H., Imanaka T. Cell-free protein synthesis at high temperatures using the lysate of a hyperthermophile. J Biotechnol. 2006;126:186–195. doi: 10.1016/j.jbiotec.2006.04.010. [DOI] [PubMed] [Google Scholar]
  8. Feilner T., Hultschig C., Lee J., Meyer S., Immink R.G., Koenig A., Possling A., Seitz H., Beveridge A., Scheel D., et al. High throughput identification of potential Arabidopsis mitogenactivated protein kinases substrates. Mol Cell Proteomics. 2005;4:1558–1568. doi: 10.1074/mcp.M500007-MCP200. [DOI] [PubMed] [Google Scholar]
  9. Gygi S.P., Rochon Y., Franza B.R., Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 1999;19:1720–1730. doi: 10.1128/MCB.19.3.1720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. He M., Stoevesandt O., Palmer E.A., Khan F., Ericsson O., Taussig M.J. Printing protein arrays from DNA arrays. Nat Methods. 2008;5:175–177. doi: 10.1038/nmeth.1178. [DOI] [PubMed] [Google Scholar]
  11. He M., Stoevesandt O., Taussig M.J. In situ synthesis of protein arrays. Curr Opin Biotechnol. 2008;19:4–9. doi: 10.1016/j.copbio.2007.11.009. [DOI] [PubMed] [Google Scholar]
  12. He M., Taussig M.J. Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method) Nucleic Acids Res. 2001;29:E73–E3. doi: 10.1093/nar/29.15.e73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hickel W., Kamp D., Knoll W. Surface-plasmon microscopy. Nature. 1989;339:186. doi: 10.1038/339186a0. [DOI] [Google Scholar]
  14. Hu S., Vissink A., Arellano M., Roozendaal C., Zhou H., Kallenberg C.G., Wong D.T. Identification of autoantibody biomarkers for primary Sjögren’s syndrome using protein microarrays. Proteomics. 2011;11:1499–1507. doi: 10.1002/pmic.201000206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Järås K., Anderson K. Autoantibodies in cancer: prognostic biomarkers and immune activation. Expert Rev Proteomics. 2011;8:577–589. doi: 10.1586/epr.11.48. [DOI] [PubMed] [Google Scholar]
  16. Katzen F., Chang G., Kudlicki W. The past, present and future of cell-free protein synthesis. Trends Biotechnol. 2005;23:150–156. doi: 10.1016/j.tibtech.2005.01.003. [DOI] [PubMed] [Google Scholar]
  17. Kawahashi Y., Doi N., Takashima H., Tsuda C., Oishi Y., Oyama R., Yonezawa M., Miyamoto-Sato E., Yanagawa H. In vitro protein microarrays for detecting protein-protein interactions: application of a new method for fluorescence labeling of proteins. Proteomics. 2003;3:1236–1243. doi: 10.1002/pmic.200300444. [DOI] [PubMed] [Google Scholar]
  18. Kim H.C., Kim T.W., Kim D.M. Prolonged production of proteins in a cell-free protein synthesis system using polymeric carbohydrates as an energy source. Process Biochem. 2011;46:1366–1369. doi: 10.1016/j.procbio.2011.03.008. [DOI] [Google Scholar]
  19. Kralicek A.V., Radjainia M., Mohamad Ali N.A., Carraher C., Newcomb R.D., Mitra A.K. A PCR-directed cell-free approach to optimize protein expression using diverse fusion tags. Protein Expr Purif. 2011;80:117–124. doi: 10.1016/j.pep.2011.06.006. [DOI] [PubMed] [Google Scholar]
  20. Langlais C., Guilleaume B., Wermke N., Scheuermann T., Ebert L., LaBaer J., Korn B. A systematic approach for testing expression of human full-length proteins in cell-free expression systems. BMC Biotechnol. 2007;7:64. doi: 10.1186/1472-6750-7-64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lausted C., Hu Z., Hood L. Quantitative serum proteomics from surface plasmon resonance imaging. Mol Cell Proteomics. 2008;7:2464–2474. doi: 10.1074/mcp.M800121-MCP200. [DOI] [PubMed] [Google Scholar]
  22. Lueking A., Cahill D.J., Müllner S. Protein biochips: A new and versatile platform technology for molecular medicine. Drug Discov Today. 2005;10:789–794. doi: 10.1016/S1359-6446(05)03449-5. [DOI] [PubMed] [Google Scholar]
  23. Ma H., He J., Liu X., Gan J., Jin G., Zhou J. Surface initiated polymerization from substrates of low initiator density and its applications in biosensors. ACS Appl Mater Interfaces. 2010;2:3223–3230. doi: 10.1021/am1006832. [DOI] [PubMed] [Google Scholar]
  24. Morley M., Molony C.M., Weber T.M., Devlin J.L., Ewens K.G., Spielman R.S., Cheung V.G. Genetic analysis of genome-wide variation in human gene expression. Nature. 2004;430:743–747. doi: 10.1038/nature02797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Murthy T.V., Wu W., Qiu Q.Q., Shi Z., LaBaer J., Brizuela L. Bacterial cell-free system for high-throughput protein expression and a comparative analysis of Escherichia coli cell-free and whole cell expression systems. Protein Expr Purif. 2004;36:217–225. doi: 10.1016/j.pep.2004.04.002. [DOI] [PubMed] [Google Scholar]
  26. Pease A.C., Solas D., Sullivan E.J., Cronin M.T., Holmes C.P., Fodor S.P. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A. 1994;91:5022–5026. doi: 10.1073/pnas.91.11.5022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Predki P.F. Functional protein microarrays: ripe for discovery. Curr Opin Chem Biol. 2004;8:8–13. doi: 10.1016/j.cbpa.2003.12.005. [DOI] [PubMed] [Google Scholar]
  28. Ramachandran N., Hainsworth E., Bhullar B., Eisenstein S., Rosen B., Lau A.Y., Walter J.C., LaBaer J. Self-assembling protein microarrays. Science. 2004;305:86–90. doi: 10.1126/science.1097639. [DOI] [PubMed] [Google Scholar]
  29. Ramachandran N., Raphael J.V., Hainsworth E., Demirkan G., Fuentes M.G., Rolfs A., Hu Y., LaBaer J. Nextgeneration high-density self-assembling functional protein arrays. Nat Methods. 2008;5:535–538. doi: 10.1038/nmeth.1210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ramachandran N., Srivastava S., Labaer J. Applications of protein microarrays for biomarker discovery. Proteomics Clin Appl. 2008;2:1444–1459. doi: 10.1002/prca.200800032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ramani S.R., Tom I., Lewin-Koh N., Wranik B., Depalatis L., Zhang J., Eaton D., Gonzalez L.C. A secreted protein microarray platform for extracellular protein interaction discovery. Anal Biochem. 2012;420:127–138. doi: 10.1016/j.ab.2011.09.017. [DOI] [PubMed] [Google Scholar]
  32. Ro H.S., Jung S.O., Kho B.H., Hong H.P., Lee J.S., Shin Y.B., Kim M.G., Chung B.H. Surface plasmon resonance imaging-based protein array chip system for monitoring a hexahistidine-tagged protein during expression and purification. Appl Environ Microbiol. 2005;71:1089–1092. doi: 10.1128/AEM.71.2.1089-1092.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Siuti P., Retterer S.T., Doktycz M.J. Continuous protein production in nanoporous, picolitre volume containers. Lab Chip. 2011;11:3523–3529. doi: 10.1039/c1lc20462a. [DOI] [PubMed] [Google Scholar]
  34. Stevens R.C. Design of high-throughput methods of protein production for structural biology. Structure. 2000;8:R177–R185. doi: 10.1016/S0969-2126(00)00193-3. [DOI] [PubMed] [Google Scholar]
  35. Wang X., Yu J., Sreekumar A., Varambally S., Shen R., Giacherio D., Mehra R., Montie J.E., Pienta K.J., Sanda M.G., et al. Autoantibody signatures in prostate cancer. N Engl J Med. 2005;353:1224–1235. doi: 10.1056/NEJMoa051931. [DOI] [PubMed] [Google Scholar]
  36. Welsh J.P., Bonomo J., Swartz J.R. Localization of BiP to translating ribosomes increases soluble accumulation of secreted eukaryotic proteins in an Escherichia coli cell-free system. Biotechnol Bioeng. 2011;108:1739–1748. doi: 10.1002/bit.23111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zawada J.F., Yin G., Steiner A.R., Yang J., Naresh A., Roy S.M., Gold D.S., Heinsohn H.G., Murray C.J. Microscale to manufacturing scale-up of cell-free cytokine production—a new approach for shortening protein production development timelines. Biotechnol Bioeng. 2011;108:1570–1578. doi: 10.1002/bit.23103. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES