Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2012 Mar 17;3(2):117–122. doi: 10.1007/s13238-012-2018-5

Multifaceted functions of Siva-1: more than an Indian God of Destruction

Yide Mei 1,, Mian Wu 1,
PMCID: PMC4875415  PMID: 22426980

Abstract

Siva-1, as a p53-inducible gene, has been shown to induce extensive apoptosis in a number of different cell lines. Recent evidence suggests that Siva-1 functions as a part of the auto-regulatory feedback loop that restrains p53 through facilitating Mdm2-mediated p53 degradation. Also, Siva-1 plays an important role in suppressing tumor metastasis. Here we review the current understanding of Siva-1-mediated apoptotic signaling pathway. We also add comments on the p53-Siva-1 feedback loop, the novel function of Siva-1 in suppressing tumor metastasis, and their potential implications.

Keywords: Siva-1, p53, apoptosis, tumor metastasis, stathmin

Contributor Information

Yide Mei, Email: meiyide@ustc.edu.cn.

Mian Wu, Email: wumian@ustc.edu.cn.

References

  1. Barkinge J.L., Gudi R., Sarah H., Chu F., Borthakur A., Prabhakar B.S., Prasad K.V. The p53-induced Siva-1 plays a significant role in cisplatin-mediated apoptosis. J Carcinog. 2009;8:2. doi: 10.4103/1477-3163.45389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beckerman R., Prives C. Transcriptional regulation by p53. Cold Spring Harb Perspect Biol. 2010;2:a000935. doi: 10.1101/cshperspect.a000935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cao C., Ren X., Kharbanda S., Koleske A., Prasad K.V., Kufe D. The ARG tyrosine kinase interacts with Siva-1 in the apoptotic response to oxidative stress. J Biol Chem. 2001;276:11465–11468. doi: 10.1074/jbc.C100050200. [DOI] [PubMed] [Google Scholar]
  4. Chambers A.F., Groom A.C., MacDonald I.C. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2:563–572. doi: 10.1038/nrc865. [DOI] [PubMed] [Google Scholar]
  5. Chu F., Barkinge J., Hawkins S., Gudi R., Salgia R., Kanteti P.V. Expression of Siva-1 protein or its putative amphipathic helical region enhances cisplatin-induced apoptosis in breast cancer cells: effect of elevated levels of BCL-2. Cancer Res. 2005;65:5301–5309. doi: 10.1158/0008-5472.CAN-04-3270. [DOI] [PubMed] [Google Scholar]
  6. Daoud S.S., Munson P.J., Reinhold W., Young L., Prabhu V.V., Yu Q., LaRose J., Kohn K.W., Weinstein J.N., Pommier Y. Impact of p53 knockout and topotecan treatment on gene expression profiles in human colon carcinoma cells: a pharmacogenomic study. Cancer Res. 2003;63:2782–2793. [PubMed] [Google Scholar]
  7. Du W., Jiang P., Li N., Mei Y., Wang X., Wen L., Yang X., Wu M. Suppression of p53 activity by Siva1. Cell Death Differ. 2009;16:1493–1504. doi: 10.1038/cdd.2009.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. E S., Lai Y.J., Tsukahara R., Chen C.S., Fujiwara Y., Yue J., Yu J.H., Guo H., Kihara A., Tigyi G., et al. Lysophosphatidic acid 2 receptor-mediated supramolecular complex formation regulates its antiapoptotic effect. J Biol Chem. 2009;284:14558–14571. doi: 10.1074/jbc.M900185200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516. doi: 10.1080/01926230701320337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fortin A., MacLaurin J.G., Arbour N., Cregan S.P., Kushwaha N., Callaghan S.M., Park D.S., Albert P.R., Slack R.S. The proapoptotic gene SIVA is a direct transcriptional target for the tumor suppressors p53 and E2F1. J Biol Chem. 2004;279:28706–28714. doi: 10.1074/jbc.M400376200. [DOI] [PubMed] [Google Scholar]
  11. Gudi R., Barkinge J., Hawkins S., Chu F., Manicassamy S., Sun Z., Duke-Cohan J.S., Prasad K.V. Siva-1 negatively regulates NF-kappaB activity: effect on T-cell receptor-mediated activation-induced cell death (AICD) Oncogene. 2006;25:3458–3462. doi: 10.1038/sj.onc.1209381. [DOI] [PubMed] [Google Scholar]
  12. Haupt Y., Maya R., Kazaz A., Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–299. doi: 10.1038/387296a0. [DOI] [PubMed] [Google Scholar]
  13. Henke A., Launhardt H., Klement K., Stelzner A., Zell R., Munder T. Apoptosis in coxsackievirus B3-caused diseases: interaction between the capsid protein VP2 and the proapoptotic protein siva. J Virol. 2000;74:4284–4290. doi: 10.1128/JVI.74.9.4284-4290.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henke A., Nestler M., Strunze S., Saluz H.P., Hortschansky P., Menzel B., Martin U., Zell R., Stelzner A., Munder T. The apoptotic capability of coxsackievirus B3 is influenced by the efficient interaction between the capsid protein VP2 and the proapoptotic host protein Siva. Virology. 2001;289:15–22. doi: 10.1006/viro.2001.1082. [DOI] [PubMed] [Google Scholar]
  15. Jacobs S.B., Basak S., Murray J.I., Pathak N., Attardi L.D. Siva is an apoptosis-selective p53 target gene important for neuronal cell death. Cell Death Differ. 2007;14:1374–1385. doi: 10.1038/sj.cdd.4402128. [DOI] [PubMed] [Google Scholar]
  16. Korsmeyer S.J. BCL-2 gene family and the regulation of programmed cell death. Cancer Res. 1999;59:1693s–1700s. [PubMed] [Google Scholar]
  17. Kubbutat M.H., Jones S.N., Vousden K.H. Regulation of p53 stability by Mdm2. Nature. 1997;387:299–303. doi: 10.1038/387299a0. [DOI] [PubMed] [Google Scholar]
  18. Li N., Jiang P., Du W., Wu Z., Li C., Qiao M., Yang X., Wu M. Siva1 suppresses epithelial-mesenchymal transition and metastasis of tumor cells by inhibiting stathmin and stabilizing microtubules. Proc Natl Acad Sci U S A. 2011;108:12851–12856. doi: 10.1073/pnas.1017372108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lin F.T., Lai Y.J., Makarova N., Tigyi G., Lin W.C. The lysophosphatidic acid 2 receptor mediates down-regulation of Siva-1 to promote cell survival. J Biol Chem. 2007;282:37759–37769. doi: 10.1074/jbc.M705025200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Manna T., Thrower D.A., Honnappa S., Steinmetz M.O., Wilson L. Regulation of microtubule dynamic instability in vitro by differentially phosphorylated stathmin. J Biol Chem. 2009;284:15640–15649. doi: 10.1074/jbc.M900343200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maya R., Balass M., Kim S.T., Shkedy D., Leal J.F., Shifman O., Moas M., Buschmann T., Ronai Z., Shiloh Y., et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 2001;15:1067–1077. doi: 10.1101/gad.886901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Muller P.A., Vousden K.H., Norman J.C. p53 and its mutants in tumor cell migration and invasion. J Cell Biol. 2011;192:209–218. doi: 10.1083/jcb.201009059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Okuno K., Yasutomi M., Nishimura N., Arakawa T., Shiomi M., Hida J., Ueda K., Minami K. Gene expression analysis in colorectal cancer using practical DNA array filter. Dis Colon Rectum. 2001;44:295–299. doi: 10.1007/BF02234309. [DOI] [PubMed] [Google Scholar]
  24. Padanilam B.J., Lewington A.J., Hammerman M.R. Expression of CD27 and ischemia/reperfusion-induced expression of its ligand Siva in rat kidneys. Kidney Int. 1998;54:1967–1975. doi: 10.1046/j.1523-1755.1998.00197.x. [DOI] [PubMed] [Google Scholar]
  25. Polyak K., Weinberg R.A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265–273. doi: 10.1038/nrc2620. [DOI] [PubMed] [Google Scholar]
  26. Prasad K.V., Ao Z., Yoon Y., Wu M.X., Rizk M., Jacquot S., Schlossman S.F. CD27, a member of the tumor necrosis factor receptor family, induces apoptosis and binds to Siva, a proapoptotic protein. Proc Natl Acad Sci U S A. 1997;94:6346–6351. doi: 10.1073/pnas.94.12.6346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Py B., Bouchet J., Jacquot G., Sol-Foulon N., Basmaciogullari S., Schwartz O., Biard-Piechaczyk M., Benichou S. The Siva protein is a novel intracellular ligand of the CD4 receptor that promotes HIV-1 envelope-induced apoptosis in T-lymphoid cells. Apoptosis. 2007;12:1879–1892. doi: 10.1007/s10495-007-0106-4. [DOI] [PubMed] [Google Scholar]
  28. Py B., Slomianny C., Auberger P., Petit P.X., Benichou S. Siva-1 and an alternative splice form lacking the death domain, Siva-2, similarly induce apoptosis in T lymphocytes via a caspase-dependent mitochondrial pathway. J Immunol. 2004;172:4008–4017. doi: 10.4049/jimmunol.172.7.4008. [DOI] [PubMed] [Google Scholar]
  29. Rana S., Maples P.B., Senzer N., Nemunaitis J. Stathmin 1: a novel therapeutic target for anticancer activity. Expert Rev Anticancer Ther. 2008;8:1461–1470. doi: 10.1586/14737140.8.9.1461. [DOI] [PubMed] [Google Scholar]
  30. Resch U., Schichl Y.M., Winsauer G., Gudi R., Prasad K., de Martin R. Siva1 is a XIAP-interacting protein that balances NFkappaB and JNK signalling to promote apoptosis. J Cell Sci. 2009;122:2651–2661. doi: 10.1242/jcs.049940. [DOI] [PubMed] [Google Scholar]
  31. Shimoda H.K., Shide K., Kameda T., Matsunaga T., Shimoda K. Tyrosine kinase 2 interacts with the proapoptotic protein Siva-1 and augments its apoptotic functions. Biochem Biophys Res Commun. 2010;400:252–257. doi: 10.1016/j.bbrc.2010.08.051. [DOI] [PubMed] [Google Scholar]
  32. Spinicelli S., Nocentini G., Ronchetti S., Krausz L.T., Bianchini R., Riccardi C. GITR interacts with the pro-apoptotic protein Siva and induces apoptosis. Cell Death Differ. 2002;9:1382–1384. doi: 10.1038/sj.cdd.4401140. [DOI] [PubMed] [Google Scholar]
  33. Thiery J.P., Acloque H., Huang R.Y., Nieto M.A. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–890. doi: 10.1016/j.cell.2009.11.007. [DOI] [PubMed] [Google Scholar]
  34. Thompson C.B. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267:1456–1462. doi: 10.1126/science.7878464. [DOI] [PubMed] [Google Scholar]
  35. Vaux D.L., Korsmeyer S.J. Cell death in development. Cell. 1999;96:245–254. doi: 10.1016/S0092-8674(00)80564-4. [DOI] [PubMed] [Google Scholar]
  36. Vogelstein B., Lane D., Levine A.J. Surfing the p53 network. Nature. 2000;408:307–310. doi: 10.1038/35042675. [DOI] [PubMed] [Google Scholar]
  37. Vousden K.H., Lu X. Live or let die: the cell’s response to p53. Nat Rev Cancer. 2002;2:594–604. doi: 10.1038/nrc864. [DOI] [PubMed] [Google Scholar]
  38. Walmsley S.R., Chilvers E.R., Thompson A.A., Vaughan K., Marriott H.M., Parker L.C., Shaw G., Parmar S., Schneider M., Sabroe I., et al. Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice. J Clin Invest. 2011;121:1053–1063. doi: 10.1172/JCI43273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Xiao H., Palhan V., Yang Y., Roeder R.G. TIP30 has an intrinsic kinase activity required for up-regulation of a subset of apoptotic genes. EMBO J. 2000;19:956–963. doi: 10.1093/emboj/19.5.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Xue L., Chu F., Cheng Y., Sun X., Borthakur A., Ramarao M., Pandey P., Wu M., Schlossman S.F., Prasad K.V. Siva-1 binds to and inhibits BCL-X(L)-mediated protection against UV radiation-induced apoptosis. Proc Natl Acad Sci U S A. 2002;99:6925–6930. doi: 10.1073/pnas.102182299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yan J., Menendez D., Yang X.P., Resnick M.A., Jetten A.M. A regulatory loop composed of RAP80-HDM2-p53 provides RAP80-enhanced p53 degradation by HDM2 in response to DNA damage. J Biol Chem. 2009;284:19280–19289. doi: 10.1074/jbc.M109.013102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yoon Y., Ao Z., Cheng Y., Schlossman S.F., Prasad K.V. Murine Siva-1 and Siva-2, alternate splice forms of the mouse Siva gene, both bind to CD27 but differentially transduce apoptosis. Oncogene. 1999;18:7174–7179. doi: 10.1038/sj.onc.1203144. [DOI] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES