Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2012 Mar 17;3(2):123–131. doi: 10.1007/s13238-012-2026-5

Crystal structures of d-psicose 3-epimerase from Clostridium cellulolyticum H10 and its complex with ketohexose sugars

Hsiu-Chien Chan 1, Yueming Zhu 1, Yumei Hu 1, Tzu-Ping Ko 2, Chun-Hsiang Huang 1, Feifei Ren 1, Chun-Chi Chen 3, Yanhe Ma 1, Rey-Ting Guo 1,, Yuanxia Sun 1,
PMCID: PMC4875416  PMID: 22426981

Abstract

d-Psicose 3-epimerase (DPEase) is demonstrated to be useful in the bioproduction of d-psicose, a rare hexose sugar, from d-fructose, found plenty in nature. Clostridium cellulolyticum H10 has recently been identified as a DPEase that can epimerize d-fructose to yield d-psicose with a much higher conversion rate when compared with the conventionally used DTEase. In this study, the crystal structure of the C. cellulolyticum DPEase was determined. The enzyme assembles into a tetramer and each subunit shows a (β/α)8 TIM barrel fold with a Mn2+ metal ion in the active site. Additional crystal structures of the enzyme in complex with substrates/products (d-psicose, d-fructose, d-tagatose and d-sorbose) were also determined. From the complex structures of C. cellulolyticum DPEase with d-psicose and d-fructose, the enzyme has much more interactions with d-psicose than d-fructose by forming more hydrogen bonds between the substrate and the active site residues. Accordingly, based on these ketohexose-bound complex structures, a C3-O3 proton-exchange mechanism for the conversion between d-psicose and d-fructose is proposed here. These results provide a clear idea for the deprotonation/protonation roles of E150 and E244 in catalysis.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-012-2026-5 and is accessible for authorized users.

Keywords: d-psicose 3-epimerase, ketohexose, complex structure

Electronic supplementary material

13238_2012_2026_MOESM1_ESM.pdf (1.2MB, pdf)

Supplementary material, approximately 1.17 MB.

Footnotes

These authors contributed equally to the work.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-012-2026-5 and is accessible for authorized users.

Contributor Information

Rey-Ting Guo, Email: guo_rt@tib.cas.cn.

Yuanxia Sun, Email: sun_yx@tib.cas.cn.

References

  1. Brünger A.T., Adams P.D., Clore G.M., DeLano W.L., Gros P., Grosse-Kunstleve R.W., Jiang J.-S., Kuszewski J., Nilges M., Pannu N.S., et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998;54:905–921. doi: 10.1107/S0907444998003254. [DOI] [PubMed] [Google Scholar]
  2. Granström T.B., Takata G., Tokuda M., Izumori K. Izumoring: a novel and complete strategy for bioproduction of rare sugars. J Biosci Bioeng. 2004;97:89–94. doi: 10.1016/S1389-1723(04)70173-5. [DOI] [PubMed] [Google Scholar]
  3. Itoh H., Khan A.R., Tajima S., Hayakawa S., Izumori K. Purification and characterization of d-tagatose 3-epimerase from Pseudomonas sp.ST-24. Biosci Biotechnol Biochem. 1994;57:1037–1039. [Google Scholar]
  4. Izumori K. Preparation of d-psicose from d-fructose by immobilized d-tagagtose-3-epimerase. J Ferment Bioeng. 1995;80:101–103. doi: 10.1016/0922-338X(95)98186-O. [DOI] [Google Scholar]
  5. Izumori K. Bioproduction strategies for rare hexose sugars. Naturwissenschaften. 2002;89:120–124. doi: 10.1007/s00114-002-0297-z. [DOI] [PubMed] [Google Scholar]
  6. Kim H.-J., Hyun E.-K., Kim Y.-S., Lee Y.-J., Oh D.-K. Characterization of an Agrobacterium tumefaciens d-psicose 3-epimerase that converts d-fructose to d-psicose. Appl Environ Microbiol. 2006;72:981–985. doi: 10.1128/AEM.72.2.981-985.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kim H.-J., Lim B.-C., Yeom S.-J., Kim Y.-S., Kim D., Oh D.-K. Roles of Ile66 and Ala107 of d-psicose 3-epimerase from Agrobacterium tumefaciens in binding O6 of its substrate, d-fructose. Biotechnol Lett. 2010;32:113–118. doi: 10.1007/s10529-009-0115-1. [DOI] [PubMed] [Google Scholar]
  8. Kim H.-J., Yeom S.-J., Kim K., Rhee S., Kim D., Oh D.-K. Mutational analysis of the active site residues of a D: -psicose 3-epimerase from Agrobacterium tumefaciens. Biotechnol Lett. 2010;32:261–268. doi: 10.1007/s10529-009-0148-5. [DOI] [PubMed] [Google Scholar]
  9. Kim K., Kim H.-J., Oh D.-K., Cha S.-S., Rhee S. Crystal structure of d-psicose 3-epimerase from Agrobacterium tumefaciens and its complex with true substrate d-fructose: a pivotal role of metal in catalysis, an active site for the non-phosphorylated substrate, and its conformational changes. J Mol Biol. 2006;361:920–931. doi: 10.1016/j.jmb.2006.06.069. [DOI] [PubMed] [Google Scholar]
  10. Kim N.-H., Kim H.-J., Kang D.-I., Jeong K.-W., Lee J.-K., Kim Y., Oh D.-K. Conversion shift of d-fructose to d-psicose for enzyme-catalyzed epimerization by addition of borate. Appl Environ Microbiol. 2008;74:3008–3013. doi: 10.1128/AEM.00249-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Matsuo T., Baba Y., Hashiguchi M., Takeshita K., Izumori K., Suzuki H. Dietary d-psicose, a C-3 epimer of d-fructose, suppresses the activity of hepatic lipogenic enzymes in rats. Asia Pac J Clin Nutr. 2001;10:233–237. doi: 10.1046/j.1440-6047.2001.00246.x. [DOI] [PubMed] [Google Scholar]
  12. Matsuo T., Izumori K. Effects of dietary d-psicose on diurnal variation in plasma glucose and insulin concentrations of rats. Biosci Biotechnol Biochem. 2006;70:2081–2085. doi: 10.1271/bbb.60036. [DOI] [PubMed] [Google Scholar]
  13. Matsuo T., Suzuki H., Hashiguchi M., Izumori K. d-psicose is a rare sugar that provides no energy to growing rats. J Nutr Sci Vitaminol (Tokyo) 2002;48:77–80. doi: 10.3177/jnsv.48.77. [DOI] [PubMed] [Google Scholar]
  14. McCoy A.J., Grosse-Kunstleve R.W., Adams P.D., Winn M.D., Storoni L.C., Read R.J. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McRee D.E. Differential evolution for protein crystallographic optimizations. Acta Crystallogr D Biol Crystallogr. 2004;60:2276–2279. doi: 10.1107/S0907444904025491. [DOI] [PubMed] [Google Scholar]
  16. Mu W., Chu F., Xing Q., Yu S., Zhou L., Jiang B. Cloning, expression, and characterization of a d-psicose 3-epimerase from Clostridium cellulolyticum H10. J Agric Food Chem. 2011;59:7785–7792. doi: 10.1021/jf201356q. [DOI] [PubMed] [Google Scholar]
  17. Oh D.-K. Tagatose: properties, applications, and biotechnological processes. Appl Microbiol Biotechnol. 2007;76:1–8. doi: 10.1007/s00253-007-0981-1. [DOI] [PubMed] [Google Scholar]
  18. Otwinowski Z., Minor W. Processing of X-ray diffraction data collected in oscillation mode. In: Carter C.W. Jr, Sweet R. M., editors. Methods in enzymology, macromolecular crystallography, part A. New York: Academic Press; 1997. pp. 307–326. [DOI] [PubMed] [Google Scholar]
  19. Emsley P., Cowtan C. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. [DOI] [PubMed] [Google Scholar]
  20. Potterton E., Briggs P., Turkenburg M., Dodson E. A graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr. 2003;59:1131–1137. doi: 10.1107/S0907444903008126. [DOI] [PubMed] [Google Scholar]
  21. Samuel J., Tanner M.E. Mechanistic aspects of enzymatic carbohydrate epimerization. Nat Prod Rep. 2002;19:261–277. doi: 10.1039/b100492l. [DOI] [PubMed] [Google Scholar]
  22. Yoshida H., Yamada M., Nishitani T., Takada G., Izumori K., Kamitori S. Crystal structures of d-tagatose 3-epimerase from Pseudomonas cichorii and its complexes with d-tagatose and d-fructose. J Mol Biol. 2007;374:443–453. doi: 10.1016/j.jmb.2007.09.033. [DOI] [PubMed] [Google Scholar]
  23. Zhang L., Mu W., Jiang B., Zhang T. Characterization of d-tagatose-3-epimerase from Rhodobacter sphaeroides that converts d-fructose into d-psicose. Biotechnol Lett. 2009;31:857–862. doi: 10.1007/s10529-009-9942-3. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

13238_2012_2026_MOESM1_ESM.pdf (1.2MB, pdf)

Supplementary material, approximately 1.17 MB.


Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES