Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2012 Apr 10;3(3):213–224. doi: 10.1007/s13238-012-0014-4

System approaches reveal the molecular networks involved in neural stem cell differentiation

Kai Wang 1,5, Haifeng Wang 2,5, Jiao Wang 2,5, Yuqiong Xie 1,5, Jun Chen 3,4, Huang Yan 1,5, Zengrong Liu 5, Tieqiao Wen 1,5,
PMCID: PMC4875420  PMID: 22492180

Abstract

The self-renewal and multipotent potentials in neural stem cells (NSCs) maintain the normal physiological functions of central nervous system (CNS). The abnormal differentiation of NSCs would lead to CNS disorders. However, the mechanisms of how NSCs differentiate into astrocytes, oligodendrocytes (OLs) and neurons are still unclear, which is mainly due to the complexity of differentiation processes and the limitation of the cell separation method. In this study, we modeled the dynamics of neural cell interactions in a systemic approach by mining the high-throughput genomic and proteomic data, and identified 8615 genes that are involved in various biological processes and functions with significant changes during the differentiation processes. A total of 1559 genes are specifically expressed in neural cells, in which 242 genes are NSC specific, 215 are astrocyte specific, 551 are OL specific, and 563 are neuron specific. In addition, we proposed 57 transcriptional regulators specifically expressed in NSCs may play essential roles in the development courses. These findings provide more comprehensive analysis for better understanding the endogenous mechanisms of NSC fate determination.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-012-0014-4 and is accessible for authorized users.

Keywords: neural stem cell, cell differentiation, molecular networks

Electronic supplementary material

13238_2012_14_MOESM1_ESM.pdf (271.5KB, pdf)

Supplementary material, approximately 271 KB.

13238_2012_14_MOESM2_ESM.pdf (184.2KB, pdf)

Supplementary material, approximately 184 KB.

13238_2012_14_MOESM3_ESM.pdf (1.5MB, pdf)

Supplementary material, approximately 1.52 MB.

13238_2012_14_MOESM4_ESM.pdf (729.3KB, pdf)

Supplementary material, approximately 729 KB.

13238_2012_14_MOESM5_ESM.pdf (9.8MB, pdf)

Supplementary material, approximately 9.81 KB.

Footnotes

These authors contributed equally to the work.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-012-0014-4 and is accessible for authorized users.

References

  1. Andersson T., Sodersten E., Duckworth J.K., Cascante A., Fritz N., Sacchetti P., Cervenka I., Bryja V., Hermanson O. CXXC5 is a novel BMP4-regulated modulator of Wnt signaling in neural stem cells. J Biol Chem. 2009;284:3672–3681. doi: 10.1074/jbc.M808119200. [DOI] [PubMed] [Google Scholar]
  2. Aranda B., Achuthan P., Alam-Faruque Y., Armean I., Bridge A., Derow C., Feuermann M., Ghanbarian A.T., Kerrien S., Khadake J., et al. The IntAct molecular interaction database in 2010. Nucleic Acids Res. 2010;38:D525–531. doi: 10.1093/nar/gkp878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barrett T., Troup D.B., Wilhite S.E., Ledoux P., Evangelista C., Kim I.F., Tomashevsky M., Marshall K.A., Phillippy K.H., Sherman P.M., et al. NCBI GEO: archive for functional genomics data sets—10 years on. Nucleic Acids Res. 2011;39:D1005–1010. doi: 10.1093/nar/gkq1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cahoy J.D., Emery B., Kaushal A., Foo L.C., Zamanian J.L., Christopherson K.S., Xing Y., Lubischer J.L., Krieg P.A., Krupenko S.A., et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008;28:264–278. doi: 10.1523/JNEUROSCI.4178-07.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang C.-C., Lin C.-J. LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol. 2011;2:1–27. doi: 10.1145/1961189.1961199. [DOI] [Google Scholar]
  6. Ding C., Peng H. Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol. 2005;3:185–205. doi: 10.1142/S0219720005001004. [DOI] [PubMed] [Google Scholar]
  7. Episkopou V. SOX2 functions in adult neural stem cells. Trends Neurosci. 2005;28:219–221. doi: 10.1016/j.tins.2005.03.003. [DOI] [PubMed] [Google Scholar]
  8. Favaro R., Valotta M., Ferri A.L., Latorre E., Mariani J., Giachino C., Lancini C., Tosetti V., Ottolenghi S., Taylor V., et al. Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci. 2009;12:1248–1256. doi: 10.1038/nn.2397. [DOI] [PubMed] [Google Scholar]
  9. da Huang W., Sherman B.T., Lempicki R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13. doi: 10.1093/nar/gkn923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. da Huang W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. [DOI] [PubMed] [Google Scholar]
  11. Juliandi B., Abematsu M., Nakashima K. Epigenetic regulation in neural stem cell differentiation. Dev Growth Differ. 2010;52:493–504. doi: 10.1111/j.1440-169X.2010.01175.x. [DOI] [PubMed] [Google Scholar]
  12. Kim J.B., Sebastiano V., Wu G., Arauzo-Bravo M.J., Sasse P., Gentile L., Ko K., Ruau D., Ehrich M., van den Boom D., et al. Oct4-induced pluripotency in adult neural stem cells. Cell. 2009;136:411–419. doi: 10.1016/j.cell.2009.01.023. [DOI] [PubMed] [Google Scholar]
  13. Kimura I., Nakayama Y., Konishi M., Kobayashi T., Mori M., Ito M., Hirasawa A., Tsujimoto G., Ohta M., Itoh N., et al. Neuferricin, a novel extracellular heme-binding protein, promotes neurogenesis. J Neurochem. 2010;112:1156–1167. doi: 10.1111/j.1471-4159.2009.06522.x. [DOI] [PubMed] [Google Scholar]
  14. Kozomara A., Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152–157. doi: 10.1093/nar/gkq1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee S.T., Chu K., Park J.E., Lee K., Kang L., Kim S.U., Kim M. Intravenous administration of human neural stem cells induces functional recovery in Huntington’s disease rat model. Neurosci Res. 2005;52:243–249. doi: 10.1016/j.neures.2005.03.016. [DOI] [PubMed] [Google Scholar]
  16. Lessard J., Wu J.I., Ranish J.A., Wan M., Winslow M.M., Staahl B.T., Wu H., Aebersold R., Graef I.A., Crabtree G.R. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron. 2007;55:201–215. doi: 10.1016/j.neuron.2007.06.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maka M., Stolt C.C., Wegner M. Identification of Sox8 as a modifier gene in a mouse model of Hirschsprung disease reveals underlying molecular defect. Dev Biol. 2005;277:155–169. doi: 10.1016/j.ydbio.2004.09.014. [DOI] [PubMed] [Google Scholar]
  18. Makri G., Lavdas A.A., Katsimpardi L., Charneau P., Thomaidou D., Matsas R. Transplantation of embryonic neural stem/precursor cells overexpressing BM88/Cend1 enhances the generation of neuronal cells in the injured mouse cortex. Stem Cells. 2010;28:127–139. doi: 10.1002/stem.258. [DOI] [PubMed] [Google Scholar]
  19. Matsumoto Y., Osumi N. Role of Pax6 in the developing central nervous system. Brain Nerve. 2008;60:365–374. [PubMed] [Google Scholar]
  20. Moghadam F.H., Alaie H., Karbalaie K., Tanhaei S., Nasr Esfahani M.H., Baharvand H. Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation. 2009;78:59–68. doi: 10.1016/j.diff.2009.06.005. [DOI] [PubMed] [Google Scholar]
  21. Namihira M., Kohyama J., Abematsu M., Nakashima K. Epigenetic mechanisms regulating fate specification of neural stem cells. Philos Trans R Soc Lond B Biol Sci. 2008;363:2099–2109. doi: 10.1098/rstb.2008.2262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Oliveira A.A., Jr., Hodges H.M. Alzheimer’s disease and neural transplantation as prospective cell therapy. Curr Alzheimer Res. 2005;2:79–95. doi: 10.2174/1567205052772759. [DOI] [PubMed] [Google Scholar]
  23. Osumi N., Shinohara H., Numayama-Tsuruta K., Maekawa M. Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells. 2008;26:1663–1672. doi: 10.1634/stemcells.2007-0884. [DOI] [PubMed] [Google Scholar]
  24. Park D., Xiang A.P., Mao F.F., Zhang L., Di C.G., Liu X.M., Shao Y., Ma B.F., Lee J.H., Ha K.S., et al. Nestin is required for the proper self-renewal of neural stem cells. Stem Cells. 2010;28:2162–2171. doi: 10.1002/stem.541. [DOI] [PubMed] [Google Scholar]
  25. Park J.H., Choi M.R., Park K.S., Kim S.H., Jung K.H., Chai Y.G. The characterization of gene expression during mouse neural stem cell differentiation in vitro. Neurosci Lett. 2012;506:50–54. doi: 10.1016/j.neulet.2011.10.046. [DOI] [PubMed] [Google Scholar]
  26. Peng H., Long F., Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005;27:1226–1238. doi: 10.1109/TPAMI.2005.159. [DOI] [PubMed] [Google Scholar]
  27. Peng H., Long F., Zhou J., Leung G., Eisen M.B., Myers E.W. Automatic image analysis for gene expression patterns of fly embryos. BMC Cell Biol. 2007;8Suppl1:S7. doi: 10.1186/1471-2121-8-S1-S7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Portales-Casamar E., Thongjuea S., Kwon A.T., Arenillas D., Zhao X., Valen E., Yusuf D., Lenhard B., Wasserman W.W., Sandelin A. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res. 2010;38:D105–110. doi: 10.1093/nar/gkp950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Renault V.M., Rafalski V.A., Morgan A.A., Salih D.A., Brett J.O., Webb A.E., Villeda S.A., Thekkat P.U., Guillerey C., Denko N.C., et al. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell. 2009;5:527–539. doi: 10.1016/j.stem.2009.09.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Salwinski L., Miller C.S., Smith A.J., Pettit F.K., Bowie J.U., Eisenberg D. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 2004;32:D449–451. doi: 10.1093/nar/gkh086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sanberg P.R. Neural stem cells for Parkinson’s disease: to protect and repair. Proc Natl Acad Sci U S A. 2007;104:11869–11870. doi: 10.1073/pnas.0704704104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stark C., Breitkreutz B.J., Chatr-Aryamontri A., Boucher L., Oughtred R., Livstone M.S., Nixon J., Van Auken K., Wang X., Shi X., et al. The BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 2011;39:D698–704. doi: 10.1093/nar/gkq1116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Steffen M., Petti A., Aach J., D’Haeseleer P., Church G. Automated modelling of signal transduction networks. BMC Bioinformatics. 2002;3:34. doi: 10.1186/1471-2105-3-34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Storch A., Schwarz J. Neural stem cells and Parkinson’s disease. J Neurol. 2002;249(Suppl3):III/30–32. doi: 10.1007/s00415-002-1306-z. [DOI] [PubMed] [Google Scholar]
  35. Suzuki H., Forrest A.R., van Nimwegen E., Daub C.O., Balwierz P.J., Irvine K.M., Lassmann T., Ravasi T., Hasegawa Y., de Hoon M.J., et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet. 2009;41:553–562. doi: 10.1038/ng.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Szklarczyk D., Franceschini A., Kuhn M., Simonovic M., Roth A., Minguez P., Doerks T., Stark M., Muller J., Bork P., et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011;39:D561–568. doi: 10.1093/nar/gkq973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tang J., Xu H., Fan X., Li D., Rancourt D., Zhou G., Li Z., Yang L. Embryonic stem cell-derived neural precursor cells improve memory dysfunction in Abeta(1–40) injured rats. Neurosci Res. 2008;62:86–96. doi: 10.1016/j.neures.2008.06.005. [DOI] [PubMed] [Google Scholar]
  38. Temple S. The development of neural stem cells. Nature. 2001;414:112–117. doi: 10.1038/35102174. [DOI] [PubMed] [Google Scholar]
  39. Thorrez L., Van Deun K., Tranchevent L.C., Van Lommel L., Engelen K., Marchal K., Moreau Y., Van Mechelen I., Schuit F. Using ribosomal protein genes as reference: a tale of caution. PLoS One. 2008;3:e1854. doi: 10.1371/journal.pone.0001854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ueki T., Tanaka M., Yamashita K., Mikawa S., Qiu Z., Maragakis N.J., Hevner R.F., Miura N., Sugimura H., Sato K. A novel secretory factor, Neurogenesin-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. J Neurosci. 2003;23:11732–11740. doi: 10.1523/JNEUROSCI.23-37-11732.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wang K., Hu F., Xu K., Cheng H., Jiang M., Feng R., Li J., Wen T. CASCADE_SCAN: mining signal transduction network from high-throughput data based on steepest descent method. BMC Bioinformatics. 2011;12:164. doi: 10.1186/1471-2105-12-164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wang K., Hu L., Shi X., Dong Y., Li H., Wen T. PSCL: Predicting protein subcellular localization based on optimal functional domains. Protein Pept Lett. 2012;19:15–22. doi: 10.2174/092986612798472820. [DOI] [PubMed] [Google Scholar]
  43. Wu Z., Irizarry R., Gentleman R., Martinez-Murillo F., Spencer F. A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc. 2004;99:909–917. doi: 10.1198/016214504000000683. [DOI] [Google Scholar]
  44. Zhao X.M., Wang R.S., Chen L., Aihara K. Uncovering signal transduction networks from high-throughput data by integer linear programming. Nucleic Acids Res. 2008;36:e48. doi: 10.1093/nar/gkn145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zhongling F., Gang Z., Lei Y. Neural stem cells and Alzheimer’s disease: challenges and hope. Am J Alzheimers Dis Other Demen. 2009;24:52–57. doi: 10.1177/1533317508327587. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

13238_2012_14_MOESM1_ESM.pdf (271.5KB, pdf)

Supplementary material, approximately 271 KB.

13238_2012_14_MOESM2_ESM.pdf (184.2KB, pdf)

Supplementary material, approximately 184 KB.

13238_2012_14_MOESM3_ESM.pdf (1.5MB, pdf)

Supplementary material, approximately 1.52 MB.

13238_2012_14_MOESM4_ESM.pdf (729.3KB, pdf)

Supplementary material, approximately 729 KB.

13238_2012_14_MOESM5_ESM.pdf (9.8MB, pdf)

Supplementary material, approximately 9.81 KB.


Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES