Abstract
A real time PCR assay for the detection of Vibrio parahaemolyticus in seafood samples was developed using a novel specific target and a competitive internal amplification control (IAC). The specificity of this assay was evaluated using 390 bacterial strains including V. parahaemolyticus, and other strains belonging to Vibrio and non-Vibrio species. The real time PCR assay unambiguously distinguished V. parahaemolyticus with a detection sensitivity of 4.8 fg per PCR with purified genomic DNA or 1 CFU per reaction by counting V. parahaemolyticus colonies. The assays of avoiding interference demonstrated that, even in the presence of 2.1 μg genomic DNA or 107 CFU background bacteria, V. parahaemolyticus could still be accurately detected. In addition, the IAC was used to indicate false-negative results, and lower than 94 copies of IAC per reaction had no influence on the detection limit. Ninety-six seafood samples were tested, of which 58 (60.4%) were positive, including 3 false negative results. Consequently, the real time PCR assay is effective for the rapid detection of V. parahaemotyticus contaminants in seafood.
Electronic Supplementary Material
Supplementary material is available for this article at 10.1007/s13238-012-2017-6 and is accessible for authorized users.
Keywords: Vibrio parahaemolyticus, real time PCR, internal amplification control, seafood
Electronic supplementary material
References
- Abdulmawjood A., Roth S., Bülte M. Two methods for construction of internal amplification controls for the detection of Escherichia coli O157 by polymerase chain reaction. Mol Cell Probes. 2002;16:335–339. doi: 10.1006/mcpr.2002.0431. [DOI] [PubMed] [Google Scholar]
- Abu Al-Soud W., Râdström P. Capacity of nine thermostable DNA polymerases To mediate DNA amplification in the presence of PCR-inhibiting samples. Appl Environ Microbiol. 1998;64:3748–3753. doi: 10.1128/aem.64.10.3748-3753.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Al-Soud W.A., Rådström P. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol. 2001;39:485–493. doi: 10.1128/JCM.39.2.485-493.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bej A.K., Patterson D.P., Brasher C.W., Vickery M.C., Jones D.D., Kaysner C.A. Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. J Microbiol Methods. 1999;36:215–225. doi: 10.1016/S0167-7012(99)00037-8. [DOI] [PubMed] [Google Scholar]
- Blackstone G.M., Nordstrom J.L., Bowen M.D., Meyer R.F., Imbro P., DePaola A. Use of a real time PCR assay for detection of the ctxA gene of Vibrio cholerae in an environmental survey of Mobile Bay. J Microbiol Methods. 2007;68:254–259. doi: 10.1016/j.mimet.2006.08.006. [DOI] [PubMed] [Google Scholar]
- Courtney B.C., Smith M.M., Henchal E.A. Development of internal controls for probe-based nucleic acid diagnostic assays. Anal Biochem. 1999;270:249–256. doi: 10.1006/abio.1999.4099. [DOI] [PubMed] [Google Scholar]
- Hartman L.J., Coyne S.R., Norwood D.A. Development of a novel internal positive control for Taqman based assays. Mol Cell Probes. 2005;19:51–59. doi: 10.1016/j.mcp.2004.07.006. [DOI] [PubMed] [Google Scholar]
- Hoorfar J., Malorny B., Abdulmawjood A., Cook N., Wagner M., Fach P. Practical considerations in design of internal amplification controls for diagnostic PCR assays. J Clin Microbiol. 2004;42:1863–1868. doi: 10.1128/JCM.42.5.1863-1868.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hossain M.T., Kim E.Y., Kim Y.R., Kim D.G., Kong I.S. Application of groEL gene for the species-specific detection of Vibrio parahaemolyticus by PCR. Lett Appl Microbiol. 2012;54:67–72. doi: 10.1111/j.1472-765X.2011.03174.x. [DOI] [PubMed] [Google Scholar]
- Kim Y.B., Okuda J., Matsumoto C., Takahashi N., Hashimoto S., Nishibuchi M. Identification of Vibrio parahaemolyticus strains at the species level by PCR targeted to the toxR gene. J Clin Microbiol. 1999;37:1173–1177. doi: 10.1128/jcm.37.4.1173-1177.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreader C.A. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol. 1996;62:1102–1106. doi: 10.1128/aem.62.3.1102-1106.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luan X.Y., Chen J.X., Zhang X.H., Jia J.T., Sun F.R., Li Y. Comparison of different primers for rapid detection of Vibrio parahaemolyticus using the polymerase chain reaction. Lett Appl Microbiol. 2007;44:242–247. doi: 10.1111/j.1472-765X.2006.02074.x. [DOI] [PubMed] [Google Scholar]
- Maaroufi Y., Ahariz N., Husson M., Crokaert F. Comparison of different methods of isolation of DNA of commonly encountered Candida species and its quantitation by using a real-time PCR-based assay. J Clin Microbiol. 2004;42:3159–3163. doi: 10.1128/JCM.42.7.3159-3163.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maaroufi Y., de Bruyne J.M., Duchateau V., Scheen R., Crokaert F. Development of a multiple internal control for clinical diagnostic real-time amplification assays. FEMS Immunol Med Microbiol. 2006;48:183–191. doi: 10.1111/j.1574-695X.2006.00125.x. [DOI] [PubMed] [Google Scholar]
- Makino K., Oshima K., Kurokawa K., Yokoyama K., Uda T., Tagomori K., Iijima Y., Najima M., Nakano M., Yamashita A., et al. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet. 2003;361:743–749. doi: 10.1016/S0140-6736(03)12659-1. [DOI] [PubMed] [Google Scholar]
- Miller V.L., Taylor R.K., Mekalanos J.J. Cholera toxin transcriptional activator toxR is a transmembrane DNA binding protein. Cell. 1987;48:271–279. doi: 10.1016/0092-8674(87)90430-2. [DOI] [PubMed] [Google Scholar]
- Nichols R.A., Campbell B.M., Smith H.V. Identification of Cryptosporidium spp. oocysts in United Kingdom noncarbonated natural mineral waters and drinking waters by using a modified nested PCR-restriction fragment length polymorphism assay. Appl Environ Microbiol. 2003;69:4183–4189. doi: 10.1128/AEM.69.7.4183-4189.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niesters H.G. Molecular and diagnostic clinical virology in real time. Clin Microbiol Infect. 2004;10:5–11. doi: 10.1111/j.1469-0691.2004.00699.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordstrom J.L., Vickery M.C., Blackstone G.M., Murray S.L., DePaola A. Development of a multiplex real-time PCR assay with an internal amplification control for the detection of total and pathogenic Vibrio parahaemolyticus bacteria in oysters. Appl Environ Microbiol. 2007;73:5840–5847. doi: 10.1128/AEM.00460-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raggam R.B., Leitner E., Berg J., Mühlbauer G., Marth E., Kessler H.H. Single-run, parallel detection of DNA from three pneumonia-producing bacteria by real-time polymerase chain reaction. J Mol Diagn. 2005;7:133–138. doi: 10.1016/S1525-1578(10)60019-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodríguez-Lázaro D., Pla M., Scortti M., Monzó H.J., Vázquez-Boland J.A. A novel real-time PCR for Listeria monocytogenes that monitors analytical performance via an internal amplification control. Appl Environ Microbiol. 2005;71:9008–9012. doi: 10.1128/AEM.71.12.9008-9012.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenstraus M., Wang Z., Chang S.Y., DeBonville D., Spadoro J.P. An internal control for routine diagnostic PCR: design, properties, and effect on clinical performance. J Clin Microbiol. 1998;36:191–197. doi: 10.1128/jcm.36.1.191-197.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachadyn P., Kur J. The construction and use of a PCR internal control. Mol Cell Probes. 1998;12:259–262. doi: 10.1006/mcpr.1998.0170. [DOI] [PubMed] [Google Scholar]
- Shirai H., Ito H., Hirayama T., Nakamoto Y., Nakabayashi N., Kumagai K., Takeda Y., Nishibuchi M. Molecular epidemiologic evidence for association of thermostable direct hemolysin (TDH) and TDH-related hemolysin of Vibrio parahaemolyticus with gastroenteritis. Infect Immun. 1990;58:3568–3573. doi: 10.1128/iai.58.11.3568-3573.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tada J., Ohashi T., Nishimura N., Shirasaki Y., Ozaki H., Fukushima S., Takano J., Nishibuchi M., Takeda Y. Detection of the thermostable direct hemolysin gene (tdh) and the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus by polymerase chain reaction. Mol Cell Probes. 1992;6:477–487. doi: 10.1016/0890-8508(92)90044-X. [DOI] [PubMed] [Google Scholar]
- Venkateswaran K., Dohmoto N., Harayama S. Cloning and nucleotide sequence of the gyrB gene of Vibrio parahaemolyticus and its application in detection of this pathogen in shrimp. Appl Environ Microbiol. 1998;64:681–687. doi: 10.1128/aem.64.2.681-687.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang S., Duan H., Zhang W., Li J.W. Analysis of bacterial foodborne disease outbreaks in China between 1994 and 2005. FEMS Immunol Med Microbiol. 2007;51:8–13. doi: 10.1111/j.1574-695X.2007.00305.x. [DOI] [PubMed] [Google Scholar]
- Ward L.N., Bej A.K. Detection of Vibrio parahaemolyticus in shellfish by use of multiplexed real-time PCR with TaqMan fluorescent probes. Appl Environ Microbiol. 2006;72:2031–2042. doi: 10.1128/AEM.72.3.2031-2042.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wieczorek K., Osek J. Development of a PCR internal amplification control for the detection of Shiga toxin-producing Escherichia coli. Bulletin Veterinary Institute Pulawy. 2004;48:397–401. [Google Scholar]
- Yu S., Chen W., Wang D., He X., Zhu X., Shi X. Species-specific PCR detection of the food-borne pathogen Vibrio parahaemolyticus using the irgB gene identified by comparative genomic analysis. FEMS Microbiol Lett. 2010;307:65–71. doi: 10.1111/j.1574-6968.2010.01952.x. [DOI] [PubMed] [Google Scholar]
- Zhu D.S., Zhou M., Fan Y.L., Shi X.M. Identification of new target sequences for PCR detection of Vibrio parahaemolyticus by genome comparison. J Rapid Meth Automation Microbiol. 2009;17:67–79. doi: 10.1111/j.1745-4581.2009.00158.x. [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.