Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2012 Mar 10;3(3):163–170. doi: 10.1007/s13238-012-2023-8

A phylum level analysis reveals lipoprotein biosynthesis to be a fundamental property of bacteria

Iain C Sutcliffe 1,, Dean J Harrington 2, Matthew I Hutchings 3
PMCID: PMC4875425  PMID: 22410786

Abstract

Bacterial lipoproteins are proteins that are post-translationally modified with a diacylglyceride at an N-terminal cysteine, which serves to tether these proteins to the outer face of the plasma membrane or to the outer membrane. This paper reviews recent insights into the enzymology of bacterial lipoprotein biosynthesis and localization. Moreover, we use bioinformatic analyses of bacterial lipoprotein signal peptide features and of the key biosynthetic enzymes to consider the distribution of lipoprotein biosynthesis at the phylum level. These analyses support the important conclusion that lipoprotein biosynthesis is a fundamental pathway utilized across the domain bacteria. Moreover, with the exception of a small number of sequences likely to derive from endosymbiont genomes, the enzymes of bacterial lipoprotein biosynthesis appear unique to bacteria, making this pathway an attractive target for the development of novel antimicrobials. Whilst lipoproteins with comparable signal peptide features are encoded in the genomes of Archaea, it is clear that these lipoproteins have a distinctive biosynthetic pathway that has yet to be characterized.

References

  1. Asanuma M., Kurokawa K., Ichikawa R., Ryu K.-H., Chae J.-H., Dohmae N., Lee B.L., Nakayama H. Structural evidence of α-aminoacylated lipoproteins of Staphylococcus aureus. FEBS J. 2011;278:716–728. doi: 10.1111/j.1742-4658.2010.07990.x. [DOI] [PubMed] [Google Scholar]
  2. Babu M.M., Priya M.L., Selvan A.T., Madera M., Gough J., Aravind L., Sankaran K. A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol. 2006;188:2761–2773. doi: 10.1128/JB.188.8.2761-2773.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bagos P.G., Tsirigos K.D., Liakopoulos T.D., Hamodrakas S.J. Prediction of lipoprotein signal peptides in Gram-positive bacteria with a Hidden Markov Model. J Proteome Res. 2008;7:5082–5093. doi: 10.1021/pr800162c. [DOI] [PubMed] [Google Scholar]
  4. Bardy S.L., Eichler J., Jarrell K.F. Archaeal signal peptides—a comparative survey at the genome level. Protein Sci. 2003;12:1833–1843. doi: 10.1110/ps.03148703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bendtsen J.D., Binnewies T.T., Hallin P.F., Sicheritz-Pontén T., Ussery D.W. Genome update: prediction of secreted proteins in 225 bacterial proteomes. Microbiology. 2005;151:1725–1727. doi: 10.1099/mic.0.28029-0. [DOI] [PubMed] [Google Scholar]
  6. Braun V., Wu H.C. Lipoproteins: structure function, biosynthesis and model for protein export. New Comp. Biochem. 1994;27:319–341. doi: 10.1016/S0167-7306(08)60417-2. [DOI] [Google Scholar]
  7. Bubeck Wardenburg J., Williams W.A., Missiakas D. Host defenses against Staphylococcus aureus infection require recognition of bacterial lipoproteins. Proc Natl Acad Sci U S A. 2006;103:13831–13836. doi: 10.1073/pnas.0603072103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buddelmeijer N., Young R. The essential Escherichia coli apolipoprotein N-acyltransferase (Lnt) exists as an extracytoplasmic thioester acyl-enzyme intermediate. Biochemistry. 2010;49:341–346. doi: 10.1021/bi9020346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Celebi N., Dalbey R.E., Yuan J. Mechanism and hydrophobic forces driving membrane protein insertion of subunit II of cytochrome bo3 oxidase. J Mol Biol. 2008;375:1282–1292. doi: 10.1016/j.jmb.2007.11.054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chandler J.R., Dunny G.M. Enterococcal peptide sex pheromones: synthesis and control of biological activity. Peptides. 2004;25:1377–1388. doi: 10.1016/j.peptides.2003.10.020. [DOI] [PubMed] [Google Scholar]
  11. Daley D.O., Rapp M., Granseth E., Melén K., Drew D., von Heijne G. Global topology analysis of the Escherichia coli inner membrane proteome. Science. 2005;308:1321–1323. doi: 10.1126/science.1109730. [DOI] [PubMed] [Google Scholar]
  12. Denham E.L., Ward P.N., Leigh J.A. Lipoprotein signal peptides are processed by Lsp and Eep of Streptococcus uberis. J Bacteriol. 2008;190:4641–4647. doi: 10.1128/JB.00287-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fernández Robledo J.A., Caler E., Matsuzaki M., Keeling P.J., Shanmugam D., Roos D.S., Vasta G.R. The search for the missing link: a relic plastid in Perkinsus? Int J Parasitol. 2011;41:1217–1229. doi: 10.1016/j.ijpara.2011.07.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fukuda A., Matsuyama S., Hara T., Nakayama J., Nagasawa H., Tokuda H. Aminoacylation of the N-terminal cysteine is essential for Lol-dependent release of lipoproteins from membranes but does not depend on lipoprotein sorting signals. J Biol Chem. 2002;277:43512–43518. doi: 10.1074/jbc.M206816200. [DOI] [PubMed] [Google Scholar]
  15. Giménez M.I., Dilks K., Pohlschröder M. Haloferax volcanii twin-arginine translocation substates include secreted soluble, C-terminally anchored and lipoproteins. Mol Microbiol. 2007;66:1597–1606. doi: 10.1111/j.1365-2958.2007.06034.x. [DOI] [PubMed] [Google Scholar]
  16. Gupta S.D., Wu H.C. Identification and subcellular localization of apolipoprotein N-acyltransferase in Escherichia coli. FEMS Microbiol Lett. 1991;62:37–41. doi: 10.1111/j.1574-6968.1991.tb04413.x. [DOI] [PubMed] [Google Scholar]
  17. Henneke P., Dramsi S., Mancuso G., Chraibi K., Pellegrini E., Theilacker C., Hübner J., Santos-Sierra S., Teti G., Golenbock D.T., et al. Lipoproteins are critical TLR2 activating toxins in group B streptococcal sepsis. J Immunol. 2008;180:6149–6158. doi: 10.4049/jimmunol.180.9.6149. [DOI] [PubMed] [Google Scholar]
  18. Hillmann F., Argentini M., Buddelmeijer N. Kinetics and phospholipid specificity of apolipoprotein N-acyltransferase. J Biol Chem. 2011;286:27936–27946. doi: 10.1074/jbc.M111.243519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hutchings M.I., Hong H.-J., Leibovitz E., Sutcliffe I.C., Buttner M.J. The CseBC-σE cell envelope stress signal transduction system of Streptomyces coelicolor is modulated by a novel lipoprotein. CseA. J. Bacteriol. 2006;188:7222–7229. doi: 10.1128/JB.00818-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hutchings M.I., Palmer T., Harrington D.J., Sutcliffe I.C. Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold’ em, knowing when to fold’ em. Trends Microbiol. 2009;17:13–21. doi: 10.1016/j.tim.2008.10.001. [DOI] [PubMed] [Google Scholar]
  21. Ito H., Ura A., Oyamada Y., Yoshida H., Yamagishi J., Narita S., Matsuyama S., Tokuda H. A new screening method to identify inhibitors of the Lol (localization of lipoproteins) system, a novel antibacterial target. Microbiol Immunol. 2007;51:263–270. doi: 10.1111/j.1348-0421.2007.tb03906.x. [DOI] [PubMed] [Google Scholar]
  22. Johnston K.L., Wu B., Guimarães A., Ford L., Slatko B.E., Taylor M.J. Lipoprotein biosynthesis as a target for anti-Wolbachia treatment of filarial nematodes. Parasit Vectors. 2010;3:99. doi: 10.1186/1756-3305-3-99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Joseph S.J., Fernández-Robledo J.A., Gardner M.J., El-Sayed N.M., Kuo C.-H., Schott E.J., Wang H., Kissinger J.C., Vasta G.R. The Alveolate Perkinsus marinus: biological insights from EST gene discovery. BMC Genomics. 2010;11:228. doi: 10.1186/1471-2164-11-228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Juncker A.S., Willenbrock H., Von Heijne G., Brunak S., Nielsen H., Krogh A. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 2003;12:1652–1662. doi: 10.1110/ps.0303703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kiho T., Nakayama M., Yasuda K., Miyakoshi S., Inukai M., Kogen H. Structure-activity relationships of globomycin analogues as antibiotics. Bioorg Med Chem. 2004;12:337–361. doi: 10.1016/j.bmc.2003.10.055. [DOI] [PubMed] [Google Scholar]
  26. Kumru O.S., Schulze R.J., Rodnin M.V., Ladokhin A.S., Zückert W.R. Surface localization determinants of Borrelia OspC/Vsp family lipoproteins. J Bacteriol. 2011;193:2814–2825. doi: 10.1128/JB.00015-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Le Hénaff M., Crémet J.Y., Fontenelle C. Purification and characterization of the major lipoprotein (P28) of Spiroplasma apis. Protein Expr Purif. 2002;24:489–496. doi: 10.1006/prep.2001.1600. [DOI] [PubMed] [Google Scholar]
  28. Lewenza S., Mhlanga M.M., Pugsley A.P. Novel inner membrane retention signals in Pseudomonas aeruginosa lipoproteins. J Bacteriol. 2008;190:6119–6125. doi: 10.1128/JB.00603-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lewenza S., Vidal-Ingigliardi D., Pugsley A.P. Direct visualization of red fluorescent lipoproteins indicates conservation of the membrane sorting rules in the family Enterobacteriaceae. J Bacteriol. 2006;188:3516–3524. doi: 10.1128/JB.188.10.3516-3524.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mattar S., Scharf B., Kent S.B.H., Rodewald K., Oesterhelt D., Engelhard M. The primary structure of halocyanin, an archaeal blue copper protein, predicts a lipid anchor for membrane fixation. J Biol Chem. 1994;269:14939–14945. [PubMed] [Google Scholar]
  31. Narita S.-I. ABC transporters involved in the biogenesis of the outer membrane in gram-negative bacteria. Biosci Biotechnol Biochem. 2011;75:1044–1054. doi: 10.1271/bbb.110115. [DOI] [PubMed] [Google Scholar]
  32. Narita S.-I., Tokuda H. An ABC transporter mediating the membrane detachment of bacterial lipoproteins depending on their sorting signals. FEBS Lett. 2006;580:1164–1170. doi: 10.1016/j.febslet.2005.10.038. [DOI] [PubMed] [Google Scholar]
  33. Narita S.-I., Tokuda H. Amino acids at positions 3 and 4 determine the membrane specificity of Pseudomonas aeruginosa lipoproteins. J Biol Chem. 2007;282:13372–13378. doi: 10.1074/jbc.M611839200. [DOI] [PubMed] [Google Scholar]
  34. Narita S.-I., Tokuda H. Overexpression of LolCDE allows deletion of the Escherichia coli gene encoding apolipoprotein N-acyltransferase. J Bacteriol. 2011;193:4832–4840. doi: 10.1128/JB.05013-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nowack E.C.M., Melkonian M., Glöckner G. Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol. 2008;18:410–418. doi: 10.1016/j.cub.2008.02.051. [DOI] [PubMed] [Google Scholar]
  36. Okuda S., Tokuda H. Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB. Proc Natl Acad Sci U S A. 2009;106:5877–5882. doi: 10.1073/pnas.0900896106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pailler, J., Aucher, W., Pires, M., and Buddelmeijer, N. (2012). Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) of E. coli has seven transmembrane segments and its essential residues are embedded in the membrane. J Bacteriol. doi:10.1128/JB.06641-11. [DOI] [PMC free article] [PubMed]
  38. Pathania R., Zlitni S., Barker C., Das R., Gerritsma D.A., Lebert J., Awuah E., Melacini G., Capretta F.A., Brown E.D. Chemical genomics in Escherichia coli identifies an inhibitor of bacterial lipoprotein targeting. Nat Chem Biol. 2009;5:849–856. doi: 10.1038/nchembio.221. [DOI] [PubMed] [Google Scholar]
  39. Qi H.-Y., Sankaran K., Gan K., Wu H.C. Structure-function relationship of bacterial prolipoprotein diacylglyceryl transferase: functionally significant conserved regions. J Bacteriol. 1995;177:6820–6824. doi: 10.1128/jb.177.23.6820-6824.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rahman O., Cummings S.P., Harrington D.J., Sutcliffe I.C. Methods for the bioinformatic identification of bacterial lipoproteins encoded in the genomes of Gram-positive bacteria. World J Microbiol Biotechnol. 2008;24:2377–2382. doi: 10.1007/s11274-008-9795-2. [DOI] [Google Scholar]
  41. Reffuveille F., Leneveu C., Chevalier S., Auffray Y., Rincé A. Lipoproteins of Enterococcus faecalis: bioinformatic identification, expression analysis and relation to virulence. Microbiology. 2011;157:3001–3013. doi: 10.1099/mic.0.053314-0. [DOI] [PubMed] [Google Scholar]
  42. Réglier-Poupet H., Frehel C., Dubail I., Beretti J.-L., Berche P., Charbit A., Raynaud C. Maturation of lipoproteins by type II signal peptidase is required for phagosomal escape of Listeria monocytogenes. J Biol Chem. 2003;278:49469–49477. doi: 10.1074/jbc.M307953200. [DOI] [PubMed] [Google Scholar]
  43. Remans K., Vercammen K., Bodilis J., Cornelis P. Genome-wide analysis and literature-based survey of lipoproteins in Pseudomonas aeruginosa. Microbiology. 2010;156:2597–2607. doi: 10.1099/mic.0.040659-0. [DOI] [PubMed] [Google Scholar]
  44. Rhodes R.G., Samarasam M.N., Van Groll E.J., McBride M.J. Mutations in Flavobacterium johnsoniae sprE result in defects in gliding motility and protein secretion. J Bacteriol. 2011;193:5322–5327. doi: 10.1128/JB.05480-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Robichon C., Vidal-Ingigliardi D., Pugsley A.P. Depletion of apolipoprotein N-acyltransferase causes mislocalization of outer membrane lipoproteins in Escherichia coli. J Biol Chem. 2005;280:974–983. doi: 10.1074/jbc.M411059200. [DOI] [PubMed] [Google Scholar]
  46. Saleh M., Song C., Nasserulla S., Leduc L.G. Indicators from archaeal secretomes. Microbiol Res. 2010;165:1–10. doi: 10.1016/j.micres.2008.03.002. [DOI] [PubMed] [Google Scholar]
  47. Sankaran K., Gan K., Rash B., Qi H.-Y., Wu H.C., Rick P.D. Roles of histidine-103 and tyrosine-235 in the function of the prolipoprotein diacylglyceryl transferase of Escherichia coli. J Bacteriol. 1997;179:2944–2948. doi: 10.1128/jb.179.9.2944-2948.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sankaran K., Gupta S.D., Wu H.C. Modification of bacterial lipoproteins. Methods Enzymol. 1995;250:683–697. doi: 10.1016/0076-6879(95)50105-3. [DOI] [PubMed] [Google Scholar]
  49. Sankaran K., Wu H.C. Bacterial prolipoprotein signal peptidase. Methods Enzymol. 1995;248:169–180. doi: 10.1016/0076-6879(95)48014-5. [DOI] [PubMed] [Google Scholar]
  50. Schenk M., Belisle J.T., Modlin R.L. TLR2 looks at lipoproteins. Immunity. 2009;31:847–849. doi: 10.1016/j.immuni.2009.11.008. [DOI] [PubMed] [Google Scholar]
  51. Schulze R.J., Chen S.Y., Kumru O.S., Zückert W.R. Translocation of Borrelia burgdorferi surface lipoprotein OspA through the outer membrane requires an unfolded conformation and can initiate at the C-terminus. Mol Microbiol. 2010;76:1266–1278. doi: 10.1111/j.1365-2958.2010.07172.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Schulze R.J., Zückert W.R. Borrelia burgdorferi lipoproteins are secreted to the outer surface by default. Mol Microbiol. 2006;59:1473–1484. doi: 10.1111/j.1365-2958.2006.05039.x. [DOI] [PubMed] [Google Scholar]
  53. Selvan A.T., Sankaran K. Localization and characterization of prolipoprotein diacylglyceryl transferase (Lgt) critical in bacterial lipoprotein biosynthesis. Biochimie. 2008;90:1647–1655. doi: 10.1016/j.biochi.2008.06.005. [DOI] [PubMed] [Google Scholar]
  54. Serebryakova M.V., Demina I.A., Galyamina M.A., Kondratov I.G., Ladygina V.G., Govorun V.M. The acylation state of surface lipoproteins of mollicute Acholeplasma laidlawii. J Biol Chem. 2011;286:22769–22776. doi: 10.1074/jbc.M111.231316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Setubal J.C., Reis M., Matsunaga J., Haake D.A. Lipoprotein computational prediction in spirochaetal genomes. Microbiology. 2006;152:113–121. doi: 10.1099/mic.0.28317-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Shruthi H., Babu M.M., Sankaran K. TAT-pathway-dependent lipoproteins as a niche-based adaptation in prokaryotes. J Mol Evol. 2010;70:359–370. doi: 10.1007/s00239-010-9334-2. [DOI] [PubMed] [Google Scholar]
  57. Storf S., Pfeiffer F., Dilks K., Chen Z.Q., Imam S., Pohlschröder M. Mutational and bioinformatic analysis of haloarchaeal lipobox-containing proteins. Archaea. 2010;2010:410975. doi: 10.1155/2010/410975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Sutcliffe I.C. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol. 2010;18:464–470. doi: 10.1016/j.tim.2010.06.005. [DOI] [PubMed] [Google Scholar]
  59. Sutcliffe I.C., Harrington D.J. Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. Microbiology. 2002;148:2065–2077. doi: 10.1099/00221287-148-7-2065. [DOI] [PubMed] [Google Scholar]
  60. Suzuki T., Itoh A., Ichihara S., Mizushima S. Characterization of the sppA gene coding for protease IV, a signal peptide peptidase of Escherichia coli. J Bacteriol. 1987;169:2523–2528. doi: 10.1128/jb.169.6.2523-2528.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Thompson B.J., Widdick D.A., Hicks M.G., Chandra G., Sutcliffe I.C., Palmer T., Hutchings M.I. Investigating lipoprotein biogenesis and function in the model Gram-positive bacterium Streptomyces coelicolor. Mol Microbiol. 2010;77:943–957. doi: 10.1111/j.1365-2958.2010.07286.x. [DOI] [PubMed] [Google Scholar]
  62. Tjalsma H., Zanen G., Venema G., Bron S., van Dijl J.M. The potential active site of the lipoprotein-specific (type II) signal peptidase of Bacillus subtilis. J Biol Chem. 1999;274:28191–28197. doi: 10.1074/jbc.274.40.28191. [DOI] [PubMed] [Google Scholar]
  63. Tokuda H. Biogenesis of outer membranes in Gram-negative bacteria. Biosci Biotechnol Biochem. 2009;73:465–473. doi: 10.1271/bbb.80778. [DOI] [PubMed] [Google Scholar]
  64. Tschumi A., Nai C., Auchli Y., Hunziker P., Gehrig P., Keller P., Grau T., Sander P. Identification of apolipoprotein N-acyltransferase (Lnt) in mycobacteria. J Biol Chem. 2009;284:27146–27156. doi: 10.1074/jbc.M109.022715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Tsukahara J., Mukaiyama K., Okuda S., Narita S.-I., Tokuda H. Dissection of LolB function—lipoprotein binding, membrane targeting and incorporation of lipoproteins into lipid bilayers. FEBS J. 2009;276:4496–4504. doi: 10.1111/j.1742-4658.2009.07156.x. [DOI] [PubMed] [Google Scholar]
  66. van Bloois E., Haan G.-J., de Gier J.-W., Oudega B., Luirink J. Distinct requirements for translocation of the N-tail and C-tail of the Escherichia coli inner membrane protein CyoA. J Biol Chem. 2006;281:10002–10009. doi: 10.1074/jbc.M511357200. [DOI] [PubMed] [Google Scholar]
  67. Vidal-Ingigliardi D., Lewenza S., Buddelmeijer N. Identification of essential residues in apolipoprotein N-acyl transferase, a member of the CN hydrolase family. J Bacteriol. 2007;189:4456–4464. doi: 10.1128/JB.00099-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Widdick D.A., Hicks M.G., Thompson B.J., Tschumi A., Chandra G., Sutcliffe I.C., Brülle J.K., Sander P., Palmer T., Hutchings M.I. Dissecting the complete lipoprotein biogenesis pathway in Streptomyces scabies. Mol Microbiol. 2011;80:1395–1412. doi: 10.1111/j.1365-2958.2011.07656.x. [DOI] [PubMed] [Google Scholar]
  69. Yu Z., Lavèn M., Klepsch M., de Gier J.-W., Bitter W., van Ulsen P., Luirink J. Role for Escherichia coli YidD in membrane protein insertion. J Bacteriol. 2011;193:5242–5251. doi: 10.1128/JB.05429-11. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES