Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2012 Jul 18;3(11):855–863. doi: 10.1007/s13238-012-2064-z

Establishment of hepatic and neural differentiation platforms of Wilson’s disease specific induced pluripotent stem cells

Fei Yi 1, Jing Qu 1, Mo Li 1, Keiichiro Suzuki 1, Na Young Kim 1, Guang-Hui Liu 1,2, Juan Carlos Izpisua Belmonte 1,3,
PMCID: PMC4875456  PMID: 22806248

Abstract

The combination of disease-specific human induced pluripotent stem cells (iPSC) and directed cell differentiation offers an ideal platform for modeling and studying many inherited human diseases. Wilson’s disease (WD) is a monogenic disorder of toxic copper accumulation caused by pathologic mutations of the ATP7B gene. WD affects multiple organs with primary manifestations in the liver and central nervous system (CNS). In order to better investigate the cellular pathogenesis of WD and to develop novel therapies against various WD syndromes, we sought to establish a comprehensive platform to differentiate WD patient iPSC into both hepatic and neural lineages. Here we report the generation of patient iPSC bearing a Caucasian population hotspot mutation of ATP7B. Combining with directed cell differentiation strategies, we successfully differentiated WD iPSC into hepatocyte-like cells, neural stem cells and neurons. Gene expression analysis and cDNA sequencing confirmed the expression of the mutant ATP7B gene in all differentiated cells. Hence we established a platform for studying both hepatic and neural abnormalities of WD, which may provide a new tool for tissue-specific disease modeling and drug screening in the future.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-012-2064-z and is accessible for authorized users.

Keywords: induced pluripotent stem cell, Wilson’s disease, hepatocyte, neural stem cell, neuron

Electronic supplementary material

13238_2012_2064_MOESM1_ESM.pdf (67.4KB, pdf)

Supplementary material, approximately 67.4 KB.

Footnotes

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-012-2064-z and is accessible for authorized users.

References

  1. Ala A., Walker A.P., Ashkan K., Dooley J.S., Schilsky M.L. Wilson’s disease. Lancet. 2007;369:397–408. doi: 10.1016/S0140-6736(07)60196-2. [DOI] [PubMed] [Google Scholar]
  2. Barthel H., Hermann W., Kluge R., Hesse S., Collingridge D.R., Wagner A., Sabri O. Concordant pre- and postsynaptic deficits of dopaminergic neurotransmission in neurologic Wilson disease. AJNR Am J Neuroradiol. 2003;24:234–238. [PMC free article] [PubMed] [Google Scholar]
  3. Chen Y.F., Tseng C.Y., Wang H.W., Kuo H.C., Yang V.W., Lee O.K. Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology. 2012;55:1193–1203. doi: 10.1002/hep.24790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Curtis D., Durkie M., Balac P., Sheard D., Goodeve A., Peake I., Quarrell O., Tanner S. A study of Wilson disease mutations in Britain. Hum Mutat. 1999;14:304–311. doi: 10.1002/(SICI)1098-1004(199910)14:4<304::AID-HUMU5>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  5. Forbes J.R., Cox D.W. Copper-dependent trafficking of Wilson disease mutant ATP7B proteins. Hum Mol Genet. 2000;9:1927–1935. doi: 10.1093/hmg/9.13.1927. [DOI] [PubMed] [Google Scholar]
  6. Huster D., Kuhne A., Bhattacharjee A., Raines L., Jantsch V., Noe J., Schirrmeister W., Sommerer I., Sabri O., Berr F., et al. Diverse functional properties of Wilson disease ATP7B variants. Gastroenterology. 2012;142:947–956. doi: 10.1053/j.gastro.2011.12.048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huster D., Weizenegger M., Kress S., Mossner J., Caca K. Rapid detection of mutations in Wilson disease gene ATP7B by DNA strip technology. Clin Chem Lab Med. 2004;42:507–510. doi: 10.1515/CCLM.2004.086. [DOI] [PubMed] [Google Scholar]
  8. Kenney S.M., Cox D.W. Sequence variation database for the Wilson disease copper transporter, ATP7B. Hum Mutat. 2007;28:1171–1177. doi: 10.1002/humu.20586. [DOI] [PubMed] [Google Scholar]
  9. Lepori M.B., Lovicu M., Dessi V., Zappu A., Incollu S., Zancan L., Giacchino R., Iorio R., Vajro P., Maggiore G., et al. Twenty-four novel mutations in Wilson disease patients of predominantly Italian origin. Genet Test. 2007;11:328–332. doi: 10.1089/gte.2007.0015. [DOI] [PubMed] [Google Scholar]
  10. Li M., Suzuki K., Qu J., Saini P., Dubova I., Yi F., Lee J., Sancho-Martinez I., Liu G.H., Izpisua Belmonte J.C. Efficient correction of hemoglobinopathy-causing mutations by homologous recombination in integration-free patient iPSCs. Cell Res. 2011;21:1740–1744. doi: 10.1038/cr.2011.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Li W., Sun W., Zhang Y., Wei W., Ambasudhan R., Xia P., Talantova M., Lin T., Kim J., Wang X., et al. Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc Natl Acad Sci U S A. 2011;108:8299–8304. doi: 10.1073/pnas.1014041108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Liu G.H., Barkho B.Z., Ruiz S., Diep D., Qu J., Yang S.L., Panopoulos A.D., Suzuki K., Kurian L., Walsh C., et al. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature. 2011;472:221–225. doi: 10.1038/nature09879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liu G.H., Suzuki K., Qu J., Sancho-Martinez I., Yi F., Li M., Kumar S., Nivet E., Kim J., Soligalla R.D., et al. Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell. 2011;8:688–694. doi: 10.1016/j.stem.2011.04.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lorincz M.T. Neurologic Wilson’s disease. Ann N Y Acad Sci. 2010;1184:173–187. doi: 10.1111/j.1749-6632.2009.05109.x. [DOI] [PubMed] [Google Scholar]
  15. Murata Y., Yamakawa E., Iizuka T., Kodama H., Abe T., Seki Y., Kodama M. Failure of copper incorporation into ceruloplasmin in the Golgi apparatus of LEC rat hepatocytes. Biochem Biophys Res Commun. 1995;209:349–355. doi: 10.1006/bbrc.1995.1510. [DOI] [PubMed] [Google Scholar]
  16. Saito T., Okabe M., Hosokawa T., Kurasaki M., Hata A., Endo F., Nagano K., Matsuda I., Urakami K., Saito K. Immunohistochemical determination of the Wilson Copper-transporting P-type ATPase in the brain tissues of the rat. Neurosci Lett. 1999;266:13–16. doi: 10.1016/S0304-3940(99)00258-X. [DOI] [PubMed] [Google Scholar]
  17. Schilsky M.L. Wilson disease: current status and the future. Biochimie. 2009;91:1278–1281. doi: 10.1016/j.biochi.2009.07.012. [DOI] [PubMed] [Google Scholar]
  18. Song Z., Cai J., Liu Y., Zhao D., Yong J., Duo S., Song X., Guo Y., Zhao Y., Qin H., et al. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res. 2009;19:1233–1242. doi: 10.1038/cr.2009.107. [DOI] [PubMed] [Google Scholar]
  19. Stapelbroek J.M., Bollen C.W., van Amstel J.K., van Erpecum K.J., van Hattum J., van den Berg L.H., Klomp L.W., Houwen R.H. The H1069Q mutation in ATP7B is associated with late and neurologic presentation in Wilson disease: results of a meta-analysis. J Hepatol. 2004;41:758–763. doi: 10.1016/j.jhep.2004.07.017. [DOI] [PubMed] [Google Scholar]
  20. Strecker K., Schneider J.P., Barthel H., Hermann W., Wegner F., Wagner A., Schwarz J., Sabri O., Zimmer C. Profound midbrain atrophy in patients with Wilson’s disease and neurological symptoms? J Neurol. 2006;253:1024–1029. doi: 10.1007/s00415-006-0151-x. [DOI] [PubMed] [Google Scholar]
  21. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. [DOI] [PubMed] [Google Scholar]
  22. Terada K., Aiba N., Yang X.L., Iida M., Nakai M., Miura N., Sugiyama T. Biliary excretion of copper in LEC rat after introduction of copper transporting P-type ATPase, ATP7B. FEBS Lett. 1999;448:53–56. doi: 10.1016/S0014-5793(99)00319-1. [DOI] [PubMed] [Google Scholar]
  23. Walshe J.M. Wilson’s disease. The presenting symptoms. Arch Dis Child. 1962;37:253–256. doi: 10.1136/adc.37.193.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wilson S. Progressive lenticular degeneration: A familiar nervous disease associated with cirhosis of the liver. Brain. 1912;34:295–509. doi: 10.1093/brain/34.4.295. [DOI] [PubMed] [Google Scholar]
  25. Yi F., Liu G.H., Izpisua Belmonte J.C. Human induced pluripotent stem cells derived hepatocytes: rising promise for disease modeling, drug development and cell therapy. Protein Cell. 2012;3:246–250. doi: 10.1007/s13238-012-2918-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zhang S., Chen S., Li W., Guo X., Zhao P., Xu J., Chen Y., Pan Q., Liu X., Zychlinski D., et al. Rescue of ATP7B function in hepatocyte-like cells from Wilson’s disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Hum Mol Genet. 2011;20:3176–3187. doi: 10.1093/hmg/ddr223. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

13238_2012_2064_MOESM1_ESM.pdf (67.4KB, pdf)

Supplementary material, approximately 67.4 KB.


Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES