Abstract
Identification of the function of all genes in the mammalian genome is critical in understanding basic mechanisms of biology. However, the diploidy of mammalian somatic cells has greatly hindered efforts to elucidate the gene function in numerous biological processes by mutagenesis-based genetic approaches. Recently, mouse haploid embryonic stem (haES) cells have been successfully isolated from parthenogenetic and androgenetic embryos, providing an ideal tool for genetic analyses. In these studies, mouse haES cells have already shown that they could be used in cell-based forward or reverse genetic screenings and in generating gene-targeting via homologous recombination. In particular, haES cells from androgenetic embryos can be employed as novel, renewable form of fertilization agent for yielding live-born mice via injection into oocytes, thus showing the possibility that genetic analysis can be extended from cellular level to organism level.
Keywords: haploid embryonic stem cells, parthenogenetic embryos, androgenetic embryos, genetic screening, diploid, genomic imprinting
References
- Carette J.E., Guimaraes C.P., Varadarajan M., Park A.S., Wuethrich I., Godarova A., Kotecki M., Cochran B.H., Spooner E., Ploegh H.L., et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science. 2009;326:1231–1235. doi: 10.1126/science.1178955. [DOI] [PubMed] [Google Scholar]
- Carette J.E., Guimaraes C.P., Wuethrich I., Blomen V.A., Varadarajan M., Sun C., Bell G., Yuan B., Muellner M.K., Nijman S.M., et al. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat Biotech. 2011;29:542–546. doi: 10.1038/nbt.1857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elling U., Taubenschmid J., Wirnsberger G., O’Malley R., Demers S.P., Vanhaelen Q., Shukalyuk A.I., Schmauss G., Schramek D., Schnuetgen F., et al. Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Cell Stem Cell. 2011;9:563–574. doi: 10.1016/j.stem.2011.10.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erba E., Ubezio P., Broggini M., Ponti M., D’Incalci M. DNA damage, cytotoxic effect and cell-cycle perturbation of Hoechst 33342 on L1210 cells in vitro. Cytometry. 1988;9:1–6. doi: 10.1002/cyto.990090102. [DOI] [PubMed] [Google Scholar]
- Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–156. doi: 10.1038/292154a0. [DOI] [PubMed] [Google Scholar]
- Freed J.J., Mezger-Freed L. Stable haploid cultured cell lines from frog embryos. Proc Natl Acad Sci U S A. 1970;65:337–344. doi: 10.1073/pnas.65.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grimm S. The art and design of genetic screens: mammalian culture cells. Nat Rev Genet. 2004;5:179–189. doi: 10.1038/nrg1291. [DOI] [PubMed] [Google Scholar]
- Ito M., Kaneko-Ishino T., Ishino F., Matsuhashi M., Yokoyama M., Katsuki M. Fate of haploid parthenogenetic cells in mouse chimeras during development. J Exp Zool. 1991;257:178–183. doi: 10.1002/jez.1402570206. [DOI] [PubMed] [Google Scholar]
- Kaufman M.H. Chromosome analysis of early postimplantation presumptive haploid parthenogenetic mouse embryos. J Embryol Exp Morphol. 1978;45:85–91. [PubMed] [Google Scholar]
- Kaufman M.H., Robertson E.J., Handyside A.H., Evans M.J. Establishment of pluripotential cell lines from haploid mouse embryos. J Embryol Exp Morphol. 1983;73:249–261. [PubMed] [Google Scholar]
- Kotecki M., Reddy P.S., Cochran B.H. Isolation and characterization of a near-haploid human cell line. Exp Cell Res. 1999;252:273–280. doi: 10.1006/excr.1999.4656. [DOI] [PubMed] [Google Scholar]
- Latham K.E., Akutsu H., Patel B., Yanagimachi R. Comparison of gene expression during preimplantation development between diploid and haploid mouse embryos. Biol Reprod. 2002;67:386–392. doi: 10.1095/biolreprod67.2.386. [DOI] [PubMed] [Google Scholar]
- Latham K.E., Patel B., Bautista F.D., Hawes S.M. Effects of X chromosome number and parental origin on X-linked gene expression in preimplantation mouse embryos. Biol Reprod. 2000;63:64–73. doi: 10.1095/biolreprod63.1.64. [DOI] [PubMed] [Google Scholar]
- Leeb M., Wutz A. Derivation of haploid embryonic stem cells from mouse embryos. Nature. 2011;479:131–134. doi: 10.1038/nature10448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li G.P., White K.L., Bunch T.D. Review of enucleation methods and procedures used in animal cloning: state of the art. Cloning Stem Cells. 2004;6:5–13. doi: 10.1089/15362300460743781. [DOI] [PubMed] [Google Scholar]
- Maside C., Gil M.A., Cuello C., Sanchez-Osorio J., Parrilla I., Lucas X., Caamano J.N., Vazquez J.M., Roca J., Martinez E.A. Effects of Hoechst 33342 staining and ultraviolet irradiation on the developmental competence of in vitro-matured porcine oocytes. Theriogenology. 2011;76:1667–1675. doi: 10.1016/j.theriogenology.2011.06.032. [DOI] [PubMed] [Google Scholar]
- Paffoni A., Brevini T.A., Gandolfi F., Ragni G. Parthenogenetic activation: biology and applications in the ART laboratory. Placenta. 2008;29SupplB:121–125. doi: 10.1016/j.placenta.2008.08.005. [DOI] [PubMed] [Google Scholar]
- Schimenti J. Haploid embryonic stem cells and the dominance of recessive traits. Cell Stem Cell. 2011;9:488–489. doi: 10.1016/j.stem.2011.11.006. [DOI] [PubMed] [Google Scholar]
- Sukov W.R., Ketterling R.P., Wei S., Monaghan K., Blunden P., Mazzara P., Raghavan R., Oliviera A.M., Wiktor A.E., Keeney G.L., et al. Nearly identical near-haploid karyotype in a peritoneal mesothelioma and a retroperitoneal malignant peripheral nerve sheath tumor. Cancer Genet Cytogenet. 2010;202:123–128. doi: 10.1016/j.cancergencyto.2010.07.120. [DOI] [PubMed] [Google Scholar]
- Tachibana M., Sparman M., Ramsey C., Ma H., Lee H.S., Penedo M.C., Mitalipov S. Generation of chimeric rhesus monkeys. Cell. 2012;148:285–295. doi: 10.1016/j.cell.2011.12.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Versieren, K., Heindryckx, B., Qian, C., Gerris, J., and De Sutter, P. (2012). Toxic effects of Hoechst staining and UV irradiation on preimplantation development of parthenogenetically activated mouse oocytes. Zygote, 1–9. [DOI] [PubMed]
- Wiellette E., Grinblat Y., Austen M., Hirsinger E., Amsterdam A., Walker C., Westerfield M., Sive H. Combined haploid and insertional mutation screen in the zebrafish. Genesis. 2004;40:231–240. doi: 10.1002/gene.20090. [DOI] [PubMed] [Google Scholar]
- Yang H., Shi L., Wang B.A., Liang D., Zhong C., Liu W., Nie Y., Liu J., Zhao J., Gao X., et al. Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell. 2012;149:605–617. doi: 10.1016/j.cell.2012.04.002. [DOI] [PubMed] [Google Scholar]
- Yi M., Hong N., Hong Y. Generation of medaka fish haploid embryonic stem cells. Science. 2009;326:430–433. doi: 10.1126/science.1175151. [DOI] [PubMed] [Google Scholar]
- Zhang X., Chen J., Davis B., Kiechle F. Hoechst 33342 induces apoptosis in HL-60 cells and inhibits topoisomerase I in vivo. Arch Pathol Lab Med. 1999;123:921–927. doi: 10.5858/1999-123-0921-HIAIHC. [DOI] [PubMed] [Google Scholar]
- Zhang X., Kiechle F.L. Hoechst 33342 induces apoptosis and alters tata box binding protein/DNA complexes in nuclei from BC3H-1 myocytes. Biochem Biophys Res Commun. 1998;248:18–21. doi: 10.1006/bbrc.1998.8906. [DOI] [PubMed] [Google Scholar]
