Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2012 Apr 20;3(5):392–399. doi: 10.1007/s13238-012-2008-7

Comparison of caspase-3 activation in tumor cells upon treatment of chemotherapeutic drugs using capillary electrophoresis

Shuang Sha 1,2, Honglin Jin 1,2, Xiao Li 1,2, Jie Yang 1,2, Ruiting Ai 3, Jinling Lu 1,2,
PMCID: PMC4875466  PMID: 22528748

Abstract

Caspases play important roles in cell apoptosis. Measurement of the dynamics of caspase activation in tumor cells not only facilitates understanding of the molecular mechanisms of apoptosis but also contributes to the development, screening, and evaluation of anticancer drugs that target apoptotic pathways. The fluorescence resonance energy transfer (FRET) technique provides a valuable approach for defining the dynamics of apoptosis with high spatio-temporal resolution. However, FRET generally functions in the single-cell level and becomes ineffective when applied in the high throughput detection of caspase activation. In the current study, a FRET sensor was combined with capillary electrophoresis (CE) to achieve a high throughput method for cellular caspase detection. The FRET-based CE system is composed of a homemade CE system and a laser source for detecting the dynamics of caspase-3 in various cells expressing sensors of caspase-3 that have been treated with anticancer drugs, such as cell cycle-independent drug cisplatin and specific cell cycle drugs camptothecin and etoposide, as well as their combination with tumor necrosis factor (TNF). A positive correlation between the caspase-3 activation velocity and drug concentration was observed when the cells were treated with cisplatin, but cells induced by camptothecin and etoposide did not show any apparent correlation with their concentrations. Moreover, different types of cells presented distinct sensitivities under the same drug treatment, and the combination treatment of TNF and anticancer drugs significantly accelerated the caspase-3 activation process. Its high throughput capability and detection sensitivity make the FRET-based CE system a useful tool for investigating the mechanisms of anticancer drugs and anticancer drug screening.

keywords: apoptosis, caspase-3, fluorescence resonance energy transfer (FRET), capillary electrophoresis (CE)

References

  1. Abbott B.P., Abbott R., Acernese F., Adhikari R., Ajith P., Allen B., Allen G., Alshourbagy M., Amin R.S., Anderson S.B., the LIGO Scientific CollaborationVirgo Collaboration et al. An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature. 2009;460:990–994. doi: 10.1038/nature08278. [DOI] [PubMed] [Google Scholar]
  2. Berezovski M., Li W.P., Poulter C.D., Krylov S.N. Measuring the activity of farnesyltransferase by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis. 2002;23:3398–3403. doi: 10.1002/1522-2683(200210)23:19<3398::AID-ELPS3398>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  3. Bergeron S., Beauchemin M., Bertrand R. Camptothecin- and etoposide-induced apoptosis in human leukemia cells is independent of cell death receptor-3 and -4 aggregation but accelerates tumor necrosis factor-related apoptosis-inducing ligand-mediated cell death. Mol Cancer Ther. 2004;3:1659–1669. [PubMed] [Google Scholar]
  4. Burton E.R., Libutti S.K. Targeting TNF-alpha for cancer therapy. J Biol. 2009;8:85. doi: 10.1186/jbiol189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen A.K., Tsourka A. Imaging RNA in living cells with molecular beacons:current perspectives and challenges. J Innovative Opt Health Sci. 2009;2:315–324. doi: 10.1142/S179354580900070X. [DOI] [Google Scholar]
  6. Chen A.Y., Liu L.F. DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol. 1994;34:191–218. doi: 10.1146/annurev.pa.34.040194.001203. [DOI] [PubMed] [Google Scholar]
  7. de Jonge M.J., Kaye S., Verweij J., Brock C., Reade S., Scurr M., van Doorn L., Verheij C., Loos W., Brindley C., et al. Phase I and pharmacokinetic study of XR11576, an oral topoisomerase I and II inhibitor, administered on days 1–5 of a 3-weekly cycle in patients with advanced solid tumours. Br J Cancer. 2004;91:1459–1465. doi: 10.1038/sj.bjc.6602178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hara K., Okamoto M., Aki T., Yagita H., Tanaka H., Mizukami Y., Nakamura H., Tomoda A., Hamasaki N., Kang D. Synergistic enhancement of TRAIL- and tumor necrosis factor alpha-induced cell death by a phenoxazine derivative. Mol Cancer Ther. 2005;4:1121–1127. doi: 10.1158/1535-7163.MCT-05-0067. [DOI] [PubMed] [Google Scholar]
  9. Hsu J.L., Chiang P.C., Guh J.H. Tunicamycin induces resistance to camptothecin and etoposide in human hepatocellular carcinoma cells: role of cell-cycle arrest and GRP78. Naunyn Schmiedebergs Arch Pharmacol. 2009;380:373–382. doi: 10.1007/s00210-009-0453-5. [DOI] [PubMed] [Google Scholar]
  10. Johnstone R.W., Ruefli A.A., Lowe S.W. Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002;108:153–164. doi: 10.1016/S0092-8674(02)00625-6. [DOI] [PubMed] [Google Scholar]
  11. Jones J., Heim R., Hare E., Stack J., Pollok B.A. Development and application of a GFP-FRET intracellular cas pase assay for drug screening. J Biomol Screen. 2000;5:307–318. doi: 10.1177/108705710000500502. [DOI] [PubMed] [Google Scholar]
  12. Joseph J., Seervi M., Sobhan P.K., Retnabai S.T. High throughput ratio imaging to profile caspase activity: potential application in multiparameter high content apoptosis analysis and drug screening. PLoS One. 2011;6:e20114. doi: 10.1371/journal.pone.0020114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lin J., Zhang Z., Zeng S., Zhou S., Liu B.F., Liu Q., Yang J., Luo Q. TRAIL-induced apoptosis proceeding from caspase-3-dependent and -independent pathways in distinct HeLa cells. Biochem Biophys Res Commun. 2006;346:1136–1141. doi: 10.1016/j.bbrc.2006.05.209. [DOI] [PubMed] [Google Scholar]
  14. Locke S., Figeys D. Techniques for the optimization of proteomic strategies based on head column stacking capillary electrophoresis. Anal Chem. 2000;72:2684–2689. doi: 10.1021/ac0003293. [DOI] [PubMed] [Google Scholar]
  15. Luo K.Q., Yu V.C., Pu Y., Chang D.C. Measuring dynamics of caspase-8 activation in a single living HeLa cell during TNFalpha-induced apoptosis. Biochem Biophys Res Commun. 2003;304:217–222. doi: 10.1016/S0006-291X(03)00559-X. [DOI] [PubMed] [Google Scholar]
  16. Mahajan N.P., Harrison-Shostak D.C., Michaux J., Herman B. Novel mutant green fluorescent protein protease substrates reveal the activation of specific caspases during apoptosis. Chem Biol. 1999;6:401–409. doi: 10.1016/S1074-5521(99)80051-9. [DOI] [PubMed] [Google Scholar]
  17. Namura S., Zhu J., Fink K., Endres M., Srinivasan A., Tomaselli K.J., Yuan J., Moskowitz M.A. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci. 1998;18:3659–3668. doi: 10.1523/JNEUROSCI.18-10-03659.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Neefjes J., Dantuma N.P. Fluorescent probes for proteolysis: tools for drug discovery. Nat Rev Drug Discov. 2004;3:58–69. doi: 10.1038/nrd1282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Postiglione I., Chiaviello A., Palumbo G. Enhancing Photodynamyc Therapy Efficacy by Combination Therapy: Dated, Current and Oncoming Strategies. Cancers. 2011;3:2597–2629. doi: 10.3390/cancers3022597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reinhold W.C., Kouros-Mehr H., Kohn K.W., Maunakea A.K., Lababidi S., Roschke A., Stover K., Alexander J., Pantazis P., Miller L., et al. Apoptotic susceptibility of cancer cells selected for camptothecin resistance: gene expression profiling, functional analysis, and molecular interaction mapping. Cancer Res. 2003;63:1000–1011. [PubMed] [Google Scholar]
  21. Szlosarek P.W., Balkwill F.R. Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol. 2003;4:565–573. doi: 10.1016/S1470-2045(03)01196-3. [DOI] [PubMed] [Google Scholar]
  22. Tsuruo T., Naito M., Tomida A., Fujita N., Mashima T., Sakamoto H., Haga N. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci. 2003;94:15–21. doi: 10.1111/j.1349-7006.2003.tb01345.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tyas L., Brophy V.A., Pope A., Rivett A.J., Tavaré J.M. Rapid caspase-3 activation during apoptosis revealed using fluorescence-resonance energy transfer. EMBO Rep. 2000;1:266–270. doi: 10.1093/embo-reports/kvd050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wu Y.X., Xing D., Luo S.M., Tang Y.H., Chen Q. Detection of caspase-3 activation in single cells by fluorescence resonance energy transfer during photodynamic therapy induced apoptosis. Cancer Lett. 2006;235:239–247. doi: 10.1016/j.canlet.2005.04.036. [DOI] [PubMed] [Google Scholar]
  25. Yang J., Zhang Z., Lin J., Lu J., Liu B.F., Zeng S., Luo Q. Detection of MMP activity in living cells by a genetically encoded surface-displayed FRET sensor. Biochim Biophys Acta. 2007;1773:400–407. doi: 10.1016/j.bbamcr.2006.11.002. [DOI] [PubMed] [Google Scholar]
  26. Yao X., Panichpisal K., Kurtzman N., Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334:115–124. doi: 10.1097/MAJ.0b013e31812dfe1e. [DOI] [PubMed] [Google Scholar]
  27. Zarrine-Afsar A., Krylov S.N. Use of capillary electrophoresis and endogenous fluorescent substrate to monitor intracellular activation of protein kinase A. Anal Chem. 2003;75:3720–3724. doi: 10.1021/ac034463+. [DOI] [PubMed] [Google Scholar]
  28. Zhang Z., Lin J., Chu J., Ma Y., Zeng S., Luo Q. Activation of caspase-3 noninvolved in the bystander effect of the herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) system. J Biomed Opt. 2008;13:031209. doi: 10.1117/1.2937830. [DOI] [PubMed] [Google Scholar]
  29. Zhang Z., Yang J., Lu J., Lin J., Zeng S., Luo Q. Fluorescence imaging to assess the matrix metalloproteinase activity and its inhibitor in vivo. J Biomed Opt. 2008;13:011006. doi: 10.1117/1.2830659. [DOI] [PubMed] [Google Scholar]
  30. Zhou S., Lin J., Du W., Zhang Z., Luo Q., Liu B.F., Dai Y. Characterization of proteinase activation dynamics by capillary electrophoresis conjugating with fluorescent protein-based probe. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;844:158–162. doi: 10.1016/j.jchromb.2006.06.038. [DOI] [PubMed] [Google Scholar]
  31. Zhou S.X., Lin J.Q., Du W., Zhang Z.H., Luo Q.M., Liu B.F., Dai Y.Q. Monitoring of proteinase activation in cell apoptosis by capillary electrophoresis with bioengineered fluorescent probe. Anal Chim Acta. 2006;569:176–181. doi: 10.1016/j.aca.2006.03.088. [DOI] [Google Scholar]
  32. Zhu L., Liu T.C.-Y., Wu M., Yuan J.-Q., Chen T.-S. Extraocular Cellular Phototransduction. J Innovative Opt Health Sci. 2009;2:93–100. doi: 10.1142/S1793545809000358. [DOI] [Google Scholar]
  33. Zuryn A., Grzanka A., Stepien A., Grzanka D., Debski R., Smolinski D. Expression of cyclin A in human leukemia cell line HL-60 following treatment with doxorubicin and etoposide: the potential involvement of cyclin A in apoptosis. Oncol Rep. 2007;17:1013–1019. [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES