Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2012 May 18;3(5):346–363. doi: 10.1007/s13238-012-2034-5

Two-dimensional gel electrophoresis in bacterial proteomics

Shirly O T Curreem 1, Rory M Watt 2, Susanna K P Lau 1,3,4,5,, Patrick C Y Woo 1,3,4,5,
PMCID: PMC4875470  PMID: 22610887

Abstract

Two-dimensional gel electrophoresis (2-DE) is a gel-based technique widely used for analyzing the protein composition of biological samples. It is capable of resolving complex mixtures containing more than a thousand protein components into individual protein spots through the coupling of two orthogonal biophysical separation techniques: isoelectric focusing (first dimension) and polyacrylamide gel electrophoresis (second dimension). 2-DE is ideally suited for analyzing the entire expressed protein complement of a bacterial cell: its proteome. Its relative simplicity and good reproducibility have led to 2-DE being widely used for exploring proteomics within a wide range of environmental and medically-relevant bacteria. Here we give a broad overview of the basic principles and historical development of gel-based proteomics, and how this powerful approach can be applied for studying bacterial biology and physiology. We highlight specific 2-DE applications that can be used to analyze when, where and how much proteins are expressed. The links between proteomics, genomics and mass spectrometry are discussed. We explore how proteomics involving tandem mass spectrometry can be used to analyze (post-translational) protein modifications or to identify proteins of unknown origin by de novo peptide sequencing. The use of proteome fractionation techniques and non-gel-based proteomic approaches are also discussed. We highlight how the analysis of proteins secreted by bacterial cells (secretomes or exoproteomes) can be used to study infection processes or the immune response. This review is aimed at non-specialists who wish to gain a concise, comprehensive and contemporary overview of the nature and applications of bacterial proteomics.

Keywords: two-dimensional gel electrophoresis, bacteria, proteomics

Footnotes

These authors contributed equally to the work.

Contributor Information

Susanna K. P. Lau, Email: skplau@hkucc.hku.hk

Patrick C. Y. Woo, Email: pcywoo@hkucc.hku.hk

References

  1. Aebersold R., Goodlett D.R. Mass spectrometry in proteomics. Chem Rev. 2001;101:269–295. doi: 10.1021/cr990076h. [DOI] [PubMed] [Google Scholar]
  2. Aebersold R., Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207. doi: 10.1038/nature01511. [DOI] [PubMed] [Google Scholar]
  3. Al Dahouk S., Jubier-Maurin V., Scholz H.C., Tomaso H., Karges W., Neubauer H., Köhler S. Quantitative analysis of the intramacrophagic Brucella suis proteome reveals metabolic adaptation to late stage of cellular infection. Proteomics. 2008;8:3862–3870. doi: 10.1002/pmic.200800026. [DOI] [PubMed] [Google Scholar]
  4. Altarriba M., Merino S., Gavín R., Canals R., Rabaan A., Shaw J.G., Tomás J.M. A polar flagella operon (flg) of Aeromonas hydrophila contains genes required for lateral flagella expression. Microb Pathog. 2003;34:249–259. doi: 10.1016/s0882-4010(03)00047-0. [DOI] [PubMed] [Google Scholar]
  5. Alteri C.J., Smith S.N., Mobley H.L. Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog. 2009;5:e1000448. doi: 10.1371/journal.ppat.1000448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Anglade P., Demey E., Labas V., Le Caer J.P., Chich J.F. Towards a proteomic map of Lactococcus lactis NCDO 763. Electrophoresis. 2000;21:2546–2549. doi: 10.1002/1522-2683(20000701)21:12<2546::AID-ELPS2546>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  7. Antelmann H., Tjalsma H., Voigt B., Ohlmeier S., Bron S., van Dijl J.M., Hecker M. A proteomic view on genome-based signal peptide predictions. Genome Res. 2001;11:1484–1502. doi: 10.1101/gr.182801. [DOI] [PubMed] [Google Scholar]
  8. Appel R.D., Hochstrasser D.F., Funk M., Vargas J.R., Pellegrini C., Muller A.F., Scherrer J.R. The MELANIE project: from a biopsy to automatic protein map interpretation by computer. Electrophoresis. 1991;12:722–735. doi: 10.1002/elps.1150121006. [DOI] [PubMed] [Google Scholar]
  9. Appel R.D., Sanchez J.C., Bairoch A., Golaz O., Miu M., Vargas J.R., Hochstrasser D.F. SWISS-2DPAGE: a database of two-dimensional gel electrophoresis images. Electrophoresis. 1993;14:1232–1238. doi: 10.1002/elps.11501401185. [DOI] [PubMed] [Google Scholar]
  10. Bendt A.K., Burkovski A., Schaffer S., Bott M., Farwick M., Hermann T., Farwick M., Hermann T. Towards a phosphoproteome map of Corynebacterium glutamicum. Proteomics. 2003;3:1637–1646. doi: 10.1002/pmic.200300494. [DOI] [PubMed] [Google Scholar]
  11. Bendtsen J.D., Kiemer L., Fausbøll A., Brunak S. Non-classical protein secretion in bacteria. BMC Microbiol. 2005;5:58. doi: 10.1186/1471-2180-5-58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bernardini G., Laschi M., Serchi T., Arena S., D’Ambrosio C., Braconi D., Scaloni A., Santucci A. Mapping phosphoproteins in Neisseria meningitidis serogroup A. Proteomics. 2011;11:1351–1358. doi: 10.1002/pmic.201000406. [DOI] [PubMed] [Google Scholar]
  13. Bjellqvist B., Ek K., Righetti P.G., Gianazza E., Görg A., Westermeier R., Postel W. Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods. 1982;6:317–339. doi: 10.1016/0165-022x(82)90013-6. [DOI] [PubMed] [Google Scholar]
  14. Blomberg A., Blomberg L., Norbeck J., Fey S.J., Larsen P.M., Larsen M., Roepstorff P., Degand H., Boutry M., Posch A., et al. Interlaboratory reproducibility of yeast protein patterns analyzed by immobilized pH gradient two-dimensional gel electrophoresis. Electrophoresis. 1995;16:1935–1945. doi: 10.1002/elps.11501601320. [DOI] [PubMed] [Google Scholar]
  15. Breen E.J., Hopwood F.G., Williams K.L., Wilkins M.R. Automatic poisson peak harvesting for high throughput protein identification. Electrophoresis. 2000;21:2243–2251. doi: 10.1002/1522-2683(20000601)21:11<2243::AID-ELPS2243>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  16. Bumann D. Pathogen proteomes during infection: A basis for infection research and novel control strategies. J Proteomics. 2010;73:2267–2276. doi: 10.1016/j.jprot.2010.08.004. [DOI] [PubMed] [Google Scholar]
  17. Bumann D., Aksu S., Wendland M., Janek K., Zimny-Arndt U., Sabarth N., Meyer T.F., Jungblut P.R. Proteome analysis of secreted proteins of the gastric pathogen Helicobacter pylori. Infect Immun. 2002;70:3396–3403. doi: 10.1128/IAI.70.7.3396-3403.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bumann D., Jungblut P.R., Meyer T.F. Helicobacter pylori vaccine development based on combined subproteome analysis. Proteomics. 2004;4:2843–2848. doi: 10.1002/pmic.200400909. [DOI] [PubMed] [Google Scholar]
  19. Bunai K., Yamane K. Effectiveness and limitation of two-dimensional gel electrophoresis in bacterial membrane protein proteomics and perspectives. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;815:227–236. doi: 10.1016/j.jchromb.2004.08.030. [DOI] [PubMed] [Google Scholar]
  20. Cash P. Investigating pathogen biology at the level of the proteome. Proteomics. 2011;11:3190–3202. doi: 10.1002/pmic.201100029. [DOI] [PubMed] [Google Scholar]
  21. Chevalier F. Highlights on the capacities of “Gel-based” proteomics. Proteome Sci. 2010;8:23. doi: 10.1186/1477-5956-8-23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Chitlaru T., Gat O., Gozlan Y., Ariel N., Shafferman A. Differential proteomic analysis of the Bacillus anthracis secretome: distinct plasmid and chromosome CO2-dependent cross talk mechanisms modulate extracellular proteolytic activities. J Bacteriol. 2006;188:3551–3571. doi: 10.1128/JB.188.10.3551-3571.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Clauser K.R., Baker P., Burlingame A.L. Role of accurate mass measurement (+/− 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem. 1999;71:2871–2882. doi: 10.1021/ac9810516. [DOI] [PubMed] [Google Scholar]
  24. Coelho A., de Oliveira Santos E., Faria M.L., de Carvalho D.P., Soares M.R., von Kruger W.M., Bisch P.M. A pro teome reference map for Vibrio cholerae El Tor. Proteomics. 2004;4:1491–1504. doi: 10.1002/pmic.200300685. [DOI] [PubMed] [Google Scholar]
  25. Coote J.G. Environmental sensing mechanisms in Bordetella. Adv Microb Physiol. 2001;44:141–181. doi: 10.1016/s0065-2911(01)44013-6. [DOI] [PubMed] [Google Scholar]
  26. Coquet L., Cosette P., Dé E., Galas L., Vaudry H., Rihouey C., Lerouge P., Junter G.A., Jouenne T. Immobilization induces alterations in the outer membrane protein pattern of Yersinia ruckeri. J Proteome Res. 2005;4:1988–1998. doi: 10.1021/pr050165c. [DOI] [PubMed] [Google Scholar]
  27. Corbett J.M., Dunn M.J., Posch A., Görg A. Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilised pH gradient isoelectric focusing in the first dimension: an interlaboratory comparison. Electrophoresis. 1994;15:1205–1211. doi: 10.1002/elps.11501501182. [DOI] [PubMed] [Google Scholar]
  28. Cordwell S.J., Larsen M.R., Cole R.T., Walsh B.J. Comparative proteomics of Staphylococcus aureus and the response of methicillin-resistant and methicillin-sensitive strains to Triton X-100. Microbiology. 2002;148:2765–2781. doi: 10.1099/00221287-148-9-2765. [DOI] [PubMed] [Google Scholar]
  29. Cordwell S.J., Nouwens A.S., Verrills N.M., Basseal D.J., Walsh B.J. Subproteomics based upon protein cellular location and relative solubilities in conjunction with composite two-dimensional electrophoresis gels. Electrophoresis. 2000;21:1094–1103. doi: 10.1002/(SICI)1522-2683(20000401)21:6<1094::AID-ELPS1094>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  30. Cortay J.C., Rieul C., Duclos B., Cozzone A.J. Characterization of the phosphoproteins of Escherichia coli cells by electrophoretic analysis. Eur J Biochem. 1986;159:227–237. doi: 10.1111/j.1432-1033.1986.tb09858.x. [DOI] [PubMed] [Google Scholar]
  31. Corthals G.L., Wasinger V.C., Hochstrasser D.F., Sanchez J.C. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis. 2000;21:1104–1115. doi: 10.1002/(SICI)1522-2683(20000401)21:6<1104::AID-ELPS1104>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  32. de Koning-Ward T.F., Robins-Browne R.M. A novel mechanism of urease regulation in Yersinia enterocolitica. FEMS Microbiol Lett. 1997;147:221–226. doi: 10.1111/j.1574-6968.1997.tb10245.x. [DOI] [PubMed] [Google Scholar]
  33. DebRoy S., Dao J., Söderberg M., Rossier O., Cianciotto N.P. Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci U S A. 2006;103:19146–19151. doi: 10.1073/pnas.0608279103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Desvaux M., Dumas E., Chafsey I., Chambon C., Hébraud M. Comprehensive appraisal of the extracellular proteins from a monoderm bacterium: theoretical and empirical exoproteomes of Listeria monocytogenes EGD-e by secretomics. J Proteome Res. 2010;9:5076–5092. doi: 10.1021/pr1003642. [DOI] [PubMed] [Google Scholar]
  35. Desvaux M., Hébraud M., Talon R., Henderson I.R. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol. 2009;17:139–145. doi: 10.1016/j.tim.2009.01.004. [DOI] [PubMed] [Google Scholar]
  36. Deutscher J., Saier M.H., Jr. Ser/Thr/Tyr protein phosphorylation in bacteria — for long time neglected, now well established. J Mol Microbiol Biotechnol. 2005;9:125–131. doi: 10.1159/000089641. [DOI] [PubMed] [Google Scholar]
  37. Dowell J.A., Frost D.C., Zhang J., Li L. Comparison of two-dimensional fractionation techniques for shotgun proteomics. Anal Chem. 2008;80:6715–6723. doi: 10.1021/ac8007994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Edman P. Method for determination of the amino acid sequence in peptides. Acta Chem Scand. 1950;4:283–293. [Google Scholar]
  39. Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967;1:80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
  40. El-Sharoud W.M., Rowbury R.J. Recent insights into microbial physiology. Sci Prog. 2006;89:141–149. doi: 10.3184/003685006783238326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Encheva V., Gharbia S.E., Wait R., Begum S., Shah H.N. Comparison of extraction procedures for proteome analysis of Streptococcus pneumoniae and a basic reference map. Proteomics. 2006;6:3306–3317. doi: 10.1002/pmic.200500744. [DOI] [PubMed] [Google Scholar]
  42. Encheva V., Wait R., Gharbia S.E., Begum S., Shah H.N. Proteome analysis of serovars Typhimurium and Pullorum of Salmonella enterica subspecies I. BMC Microbiol. 2005;5:42. doi: 10.1186/1471-2180-5-42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Eng J.K., McCormack A.L., Yates J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom. 1994;5:976–989. doi: 10.1016/1044-0305(94)80016-2. [DOI] [PubMed] [Google Scholar]
  44. Eymann C., Dreisbach A., Albrecht D., Bernhardt J., Becher D., Gentner S., Tam T., Büttner K., Buurman G., Scharf C., et al. A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics. 2004;4:2849–2876. doi: 10.1002/pmic.200400907. [DOI] [PubMed] [Google Scholar]
  45. Fenn J.B., Mann M., Meng C.K., Wong S.F., Whitehouse C.M. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246:64–71. doi: 10.1126/science.2675315. [DOI] [PubMed] [Google Scholar]
  46. Fleischmann R.D., Adams M.D., White O., Clayton R.A., Kirkness E.F., Kerlavage A.R., Bult C.J., Tomb J.F., Dougherty B.A., Merrick J.M., et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995;269:496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  47. Folio P., Chavant P., Chafsey I., Belkorchia A., Chambon C., Hébraud M. Two-dimensional electrophoresis database of Listeria monocytogenes EGDe proteome and proteomic analysis of mid-log and stationary growth phase cells. Proteomics. 2004;4:3187–3201. doi: 10.1002/pmic.200300841. [DOI] [PubMed] [Google Scholar]
  48. Fountoulakis M., Gasser R. Proteomic analysis of the cell envelope fraction of Escherichia coli. Amino Acids. 2003;24:19–41. doi: 10.1007/s00726-002-0339-z. [DOI] [PubMed] [Google Scholar]
  49. Franco A.T., Friedman D.B., Nagy T.A., Romero-Gallo J., Krishna U., Kendall A., Israel D.A., Tegtmeyer N., Washington M.K., Peek R.M., Jr. Delineation of a carcinogenic Helicobacter pylori proteome. Mol Cell Proteomics. 2009;8:1947–1958. doi: 10.1074/mcp.M900139-MCP200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Gade D., Gobom J., Rabus R. Proteomic analysis of carbohydrate catabolism and regulation in the marine bacterium Rhodopirellula baltica. Proteomics. 2005;5:3672–3683. doi: 10.1002/pmic.200401200. [DOI] [PubMed] [Google Scholar]
  51. Gao H., Yang Z.K., Wu L., Thompson D.K., Zhou J. Global transcriptome analysis of the cold shock response of Shewanella oneidensis MR-1 and mutational analysis of its classical cold shock proteins. J Bacteriol. 2006;188:4560–4569. doi: 10.1128/JB.01908-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Gardy J.L., Brinkman F.S. Methods for predicting bacterial protein subcellular localization. Nat Rev Microbiol. 2006;4:741–751. doi: 10.1038/nrmicro1494. [DOI] [PubMed] [Google Scholar]
  53. Garrels J.I. The QUEST system for quantitative analysis of two-dimensional gels. J Biol Chem. 1989;264:5269–5282. [PubMed] [Google Scholar]
  54. Gatlin C.L., Pieper R., Huang S.T., Mongodin E., Gebregeorgis E., Parmar P.P., Clark D.J., Alami H., Papazisi L., Fleischmann R.D., et al. Proteomic profiling of cell envelope-associated proteins from Staphylococcus aureus. Proteomics. 2006;6:1530–1549. doi: 10.1002/pmic.200500253. [DOI] [PubMed] [Google Scholar]
  55. Gevaert K., Van Damme P., Ghesquière B., Impens F., Martens L., Helsens K., Vandekerckhove J. A la carte proteomics with an emphasis on gel-free techniques. Proteomics. 2007;7:2698–2718. doi: 10.1002/pmic.200700114. [DOI] [PubMed] [Google Scholar]
  56. Görg A., Obermaier C., Boguth G., Harder A., Scheibe B., Wildgruber R., Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 2000;21:1037–1053. doi: 10.1002/(SICI)1522-2683(20000401)21:6<1037::AID-ELPS1037>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  57. Greenough C., Jenkins R.E., Kitteringham N.R., Pirmohamed M., Park B.K., Pennington S.R. A method for the rapid depletion of albumin and immunoglobulin from human plasma. Proteomics. 2004;4:3107–3111. doi: 10.1002/pmic.200300815. [DOI] [PubMed] [Google Scholar]
  58. Guerrera I.C., Kleiner O. Application of mass spectrometry in proteomics. Biosci Rep. 2005;25:71–93. doi: 10.1007/s10540-005-2849-x. [DOI] [PubMed] [Google Scholar]
  59. Gupta M.K., Subramanian V., Yadav J.S. Immunoproteomic identification of secretory and subcellular protein antigens and functional evaluation of the secretome fraction of Mycobacterium immunogenum, a newly recognized species of the Mycobacterium chelonae-Mycobacterium abscessus group. J Proteome Res. 2009;8:2319–2330. doi: 10.1021/pr8009462. [DOI] [PubMed] [Google Scholar]
  60. Haas G., Karaali G., Ebermayer K., Metzger W.G., Lamer S., Zimny-Arndt U., Diescher S., Goebel U.B., Vogt K., Roznowski A.B., et al. Immunoproteomics of Helicobacter pylori infection and relation to gastric disease. Proteomics. 2002;2:313–324. doi: 10.1002/1615-9861(200203)2:3<313::aid-prot313>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  61. Han M.J., Lee S.Y. The Escherichia coli proteome: past, present, and future prospects. Microbiol Mol Biol Rev. 2006;70:362–439. doi: 10.1128/MMBR.00036-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Hecker M., Antelmann H., Büttner K., Bernhardt J. Gel-based proteomics of Gram-positive bacteria: a powerful tool to address physiological questions. Proteomics. 2008;8:4958–4975. doi: 10.1002/pmic.200800278. [DOI] [PubMed] [Google Scholar]
  63. Hecker M., Völker U. Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics. Proteomics. 2004;4:3727–3750. doi: 10.1002/pmic.200401017. [DOI] [PubMed] [Google Scholar]
  64. Henderson B., Martin A. Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun. 2011;79:3476–3491. doi: 10.1128/IAI.00179-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Henzel W.J., Watanabe C., Stults J.T. Protein identification: the origins of peptide mass fingerprinting. J Am Soc Mass Spectrom. 2003;14:931–942. doi: 10.1016/S1044-0305(03)00214-9. [DOI] [PubMed] [Google Scholar]
  66. Houthaeve T., Gausepohl H., Ashman K., Nillson T., Mann M. Automated protein preparation techniques using a digest robot. J Protein Chem. 1997;16:343–348. doi: 10.1023/a:1026372302560. [DOI] [PubMed] [Google Scholar]
  67. Hueck C.J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev. 1998;62:379–433. doi: 10.1128/mmbr.62.2.379-433.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Ishihama Y., Schmidt T., Rappsilber J., Mann M., Hartl F.U., Kerner M.J., Frishman D. Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics. 2008;9:102. doi: 10.1186/1471-2164-9-102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. James P., Quadroni M., Carafoli E., Gonnet G. Protein identification in DNA databases by peptide mass fingerprinting. Protein Sci. 1994;3:1347–1350. doi: 10.1002/pro.5560030822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Jeffery C.J. Moonlighting proteins—an update. Mol Biosyst. 2009;5:345–350. doi: 10.1039/b900658n. [DOI] [PubMed] [Google Scholar]
  71. Jongbloed J.D., Martin U., Antelmann H., Hecker M., Tjalsma H., Venema G., Bron S., van Dijl J.M., Müller J. TatC is a specificity determinant for protein secretion via the twin-arginine translocation pathway. J Biol Chem. 2000;275:41350–41357. doi: 10.1074/jbc.M004887200. [DOI] [PubMed] [Google Scholar]
  72. Jungblut P.R. Proteome analysis of bacterial pathogens. Microbes Infect. 2001;3:831–840. doi: 10.1016/s1286-4579(01)01441-1. [DOI] [PubMed] [Google Scholar]
  73. Jungblut P.R., Bumann D., Haas G., Zimny-Arndt U., Holland P., Lamer S., Siejak F., Aebischer A., Meyer T.F. Comparative proteome analysis of Helicobacter pylori. Mol Microbiol. 2000;36:710–725. doi: 10.1046/j.1365-2958.2000.01896.x. [DOI] [PubMed] [Google Scholar]
  74. Kalia A., Gupta R.P. Proteomics: a paradigm shift. Crit Rev Biotechnol. 2005;25:173–198. doi: 10.1080/07388550500365102. [DOI] [PubMed] [Google Scholar]
  75. Karas M., Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988;60:2299–2301. doi: 10.1021/ac00171a028. [DOI] [PubMed] [Google Scholar]
  76. Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik. 1975;26:231–243. doi: 10.1007/BF00281458. [DOI] [PubMed] [Google Scholar]
  77. Klose J. From 2-D electrophoresis to proteomics. Electrophoresis. 2009;30:S142–S149. doi: 10.1002/elps.200900118. [DOI] [PubMed] [Google Scholar]
  78. Konkel M.E., Tilly K. Temperature-regulated expression of bacterial virulence genes. Microbes Infect. 2000;2:157–166. doi: 10.1016/s1286-4579(00)00272-0. [DOI] [PubMed] [Google Scholar]
  79. Lau S.K., Fan R.Y., Ho T.C., Wong G.K., Tsang A.K., Teng J.L., Chen W., Watt R.M., Curreem S.O., Tse H., et al. Environmental adaptability and stress tolerance of Laribacter hongkongensis: a genome-wide analysis. Cell Biosci. 2011;1:22. doi: 10.1186/2045-3701-1-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Lau S.K., Woo P.C., Fan R.Y., Ma S.S., Hui W.T., Au S.Y., Chan L.L., Chan J.Y., Lau A.T., Leung K.Y., et al. Isolation of Laribacter hongkongensis, a novel bacterium associated with gastroenteritis, from drinking water reservoirs in Hong Kong. J Appl Microbiol. 2007;103:507–515. doi: 10.1111/j.1365-2672.2006.03263.x. [DOI] [PubMed] [Google Scholar]
  81. Lau S.K.P., Lee L.C.K., Fan R.Y.Y., Teng J.L.L., Tse C.W.S., Woo P.C.Y., Yuen K.-Y. Isolation of Laribacter hongkongensis, a novel bacterium associated with gastroenteritis, from Chinese tiger frog. Int J Food Microbiol. 2009;129:78–82. doi: 10.1016/j.ijfoodmicro.2008.10.021. [DOI] [PubMed] [Google Scholar]
  82. Lescuyer P., Hochstrasser D.F., Sanchez J.C. Comprehensive proteome analysis by chromatographic protein prefractionation. Electrophoresis. 2004;25:1125–1135. doi: 10.1002/elps.200305792. [DOI] [PubMed] [Google Scholar]
  83. Liao X., Ying T., Wang H., Wang J., Shi Z., Feng E., Wei K., Wang Y., Zhang X., Huang L., et al. A two-dimensional proteome map of Shigella flexneri. Electrophoresis. 2003;24:2864–2882. doi: 10.1002/elps.200305519. [DOI] [PubMed] [Google Scholar]
  84. Link A.J., Eng J., Schieltz D.M., Carmack E., Mize G.J., Morris D.R., Garvik B.M., Yates J.R. 3rd. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol. 1999;17:676–682. doi: 10.1038/10890. [DOI] [PubMed] [Google Scholar]
  85. Lopez-Campistrous A., Semchuk P., Burke L., Palmer-Stone T., Brokx S.J., Broderick G., Bottorff D., Bolch S., Weiner J.H., Ellison M.J. Localization, annotation, and comparison of the Escherichia coli K-12 proteome under two states of growth. Mol Cell Proteomics. 2005;4:1205–1209. doi: 10.1074/mcp.D500006-MCP200. [DOI] [PubMed] [Google Scholar]
  86. Macek B., Mijakovic I., Olsen J.V., Gnad F., Kumar C., Jensen P.R., Mann M. The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol Cell Proteomics. 2007;6:697–707. doi: 10.1074/mcp.M600464-MCP200. [DOI] [PubMed] [Google Scholar]
  87. Marceau M. Transcriptional regulation in Yersinia: an update. Curr Issues Mol Biol. 2005;7:151–177. [PubMed] [Google Scholar]
  88. Markert S., Arndt C., Felbeck H., Becher D., Sievert S.M., Hügler M., Albrecht D., Robidart J., Bench S., Feldman R.A., et al. Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science. 2007;315:247–250. doi: 10.1126/science.1132913. [DOI] [PubMed] [Google Scholar]
  89. Marouga R., David S., Hawkins E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem. 2005;382:669–678. doi: 10.1007/s00216-005-3126-3. [DOI] [PubMed] [Google Scholar]
  90. McHugh L., Arthur J.W. Computational methods for protein identification from mass spectrometry data. PLoS Comput Biol. 2008;4:e12. doi: 10.1371/journal.pcbi.0040012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Medberry S., Gallagher S., Moomaw B. Overview of digital electrophoresis analysis. Curr Protoc Protein Sci Chapter. 2005;10:Unit 10 12. doi: 10.1002/0471140864.ps1012s41. [DOI] [PubMed] [Google Scholar]
  92. Miesel L., Greene J., Black T.A. Genetic strategies for antibacterial drug discovery. Nat Rev Genet. 2003;4:442–456. doi: 10.1038/nrg1086. [DOI] [PubMed] [Google Scholar]
  93. Molloy M.P., Herbert B.R., Slade M.B., Rabilloud T., Nouwens A.S., Williams K.L., Gooley A.A. Proteomic analysis of the Escherichia coli outer membrane. Eur J Biochem. 2000;267:2871–2881. doi: 10.1046/j.1432-1327.2000.01296.x. [DOI] [PubMed] [Google Scholar]
  94. Mora M., Donati C., Medini D., Covacci A., Rappuoli R. Microbial genomes and vaccine design: refinements to the classical reverse vaccinology approach. Curr Opin Microbiol. 2006;9:532–536. doi: 10.1016/j.mib.2006.07.003. [DOI] [PubMed] [Google Scholar]
  95. Morris H.R., Panico M., Barber M., Bordoli R.S., Sedgwick R.D., Tyler A. Fast atom bombardment: a new mass spectrometric method for peptide sequence analysis. Biochem Biophys Res Commun. 1981;101:623–631. doi: 10.1016/0006-291x(81)91304-8. [DOI] [PubMed] [Google Scholar]
  96. Ni X.P., Ren S.H., Sun J.R., Xiang H.Q., Gao Y., Kong Q.X., Cha J., Pan J.C., Yu H., Li H.M. Laribacter hongkongensis isolated from a patient with community-acquired gastroenteritis in Hangzhou City. J Clin Microbiol. 2007;45:255–256. doi: 10.1128/JCM.01400-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Nouwens A.S., Willcox M.D., Walsh B.J., Cordwell S.J. Proteomic comparison of membrane and extracellular proteins from invasive (PAO1) and cytotoxic (6206) strains of Pseudomonas aeruginosa. Proteomics. 2002;2:1325–1346. doi: 10.1002/1615-9861(200209)2:9<1325::AID-PROT1325>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  98. O’Connor C.D., Farris M., Fowler R., Qi S.Y. The proteome of Salmonella enterica serovar typhimurium: current progress on its determination and some applications. Electrophoresis. 1997;18:1483–1490. doi: 10.1002/elps.1150180823. [DOI] [PubMed] [Google Scholar]
  99. O’Farrell P.H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250:4007–4021. [PMC free article] [PubMed] [Google Scholar]
  100. Pancholi V., Fischetti V.A. A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med. 1992;176:415–426. doi: 10.1084/jem.176.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Parkhill J., Wren B.W. Bacterial epidemiology and biology — lessons from genome sequencing. Genome Biol. 2011;12:230. doi: 10.1186/gb-2011-12-10-230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Patton W.F. Detection technologies in proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;771:3–31. doi: 10.1016/s1570-0232(02)00043-0. [DOI] [PubMed] [Google Scholar]
  103. Pemberton J.M., Kidd S.P., Schmidt R. Secreted enzymes of Aeromonas. FEMS Microbiol Lett. 1997;152:1–10. doi: 10.1111/j.1574-6968.1997.tb10401.x. [DOI] [PubMed] [Google Scholar]
  104. Perkins D.N., Pappin D.J.C., Creasy D.M., Cottrell J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–3567. doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  105. Perrin C., González-Márquez H., Gaillard J.L., Bracquart P., Guimont C. Reference map of soluble proteins from Streptococcus thermophilus by two-dimensional electrophoresis. Electrophoresis. 2000;21:949–955. doi: 10.1002/(SICI)1522-2683(20000301)21:5<949::AID-ELPS949>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  106. Phadtare S., Alsina J., Inouye M. Cold-shock response and cold-shock proteins. Curr Opin Microbiol. 1999;2:175–180. doi: 10.1016/S1369-5274(99)80031-9. [DOI] [PubMed] [Google Scholar]
  107. Phillips C.I., Bogyo M. Proteomics meets microbiology: technical advances in the global mapping of protein expression and function. Cell Microbiol. 2005;7:1061–1076. doi: 10.1111/j.1462-5822.2005.00554.x. [DOI] [PubMed] [Google Scholar]
  108. Poetsch A., Wolters D. Bacterial membrane proteomics. Proteomics. 2008;8:4100–4122. doi: 10.1002/pmic.200800273. [DOI] [PubMed] [Google Scholar]
  109. Poland T., Rabilloud T., Sinha P. Silver Staining of 2-D Gels. In: Walker J.M., editor. Proteomics Protocols Handbook. Totowa, NJ: Human Press; 2005. pp. 177–184. [Google Scholar]
  110. Qian W.J., Jacobs J.M., Liu T., Camp D.G., 2nd, Smith R.D. Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications. Mol Cell Proteomics. 2006;5:1727–1744. doi: 10.1074/mcp.M600162-MCP200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Rabilloud T. Membrane proteins and proteomics: love is possible, but so difficult. Electrophoresis. 2009;30:S174–S180. doi: 10.1002/elps.200900050. [DOI] [PubMed] [Google Scholar]
  112. Rabilloud T., Chevallet M., Luche S., Lelong C. Two-dimensional gel electrophoresis in proteomics: Past, present and future. J Proteomics. 2010;73:2064–2077. doi: 10.1016/j.jprot.2010.05.016. [DOI] [PubMed] [Google Scholar]
  113. Rabilloud T., Heller M., Gasnier F., Luche S., Rey C., Aebersold R., Benahmed M., Louisot P., Lunardi J. Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J Biol Chem. 2002;277:19396–19401. doi: 10.1074/jbc.M106585200. [DOI] [PubMed] [Google Scholar]
  114. Rabilloud T., Vaezzadeh A.R., Potier N., Lelong C., Leize-Wagner E., Chevallet M. Power and limitations of electrophoretic separations in proteomics strategies. Mass Spectrom Rev. 2009;28:816–843. doi: 10.1002/mas.20204. [DOI] [PubMed] [Google Scholar]
  115. Rappuoli R. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine. 2001;19:2688–2691. doi: 10.1016/s0264-410x(00)00554-5. [DOI] [PubMed] [Google Scholar]
  116. Regula J.T., Ueberle B., Boguth G., Görg A., Schnölzer M., Herrmann R., Frank R. Towards a two-dimensional proteome map of Mycoplasma pneumoniae. Electrophoresis. 2000;21:3765–3780. doi: 10.1002/1522-2683(200011)21:17<3765::AID-ELPS3765>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  117. Renzone G., D’Ambrosio C., Arena S., Rullo R., Ledda L., Ferrara L., Scaloni A. Differential proteomic analysis in the study of prokaryotes stress resistance. Ann Ist Super Sanita. 2005;41:459–468. [PubMed] [Google Scholar]
  118. Roe M.R., Griffin T.J. Gel-free mass spectrometry-based high throughput proteomics: tools for studying biological response of proteins and proteomes. Proteomics. 2006;6:4678–4687. doi: 10.1002/pmic.200500876. [DOI] [PubMed] [Google Scholar]
  119. Rosen R., Sacher A., Shechter N., Becher D., Büttner K., Biran D., Hecker M., Ron E.Z. Two-dimensional reference map of Agrobacterium tumefaciens proteins. Proteomics. 2004;4:1061–1073. doi: 10.1002/pmic.200300640. [DOI] [PubMed] [Google Scholar]
  120. Rosengren A.T., Salmi J.M., Aittokallio T., Westerholm J., Lahesmaa R., Nyman T.A., Nevalainen O.S. Comparison of PDQuest and Progenesis software packages in the analysis of two-dimensional electrophoresis gels. Proteomics. 2003;3:1936–1946. doi: 10.1002/pmic.200300544. [DOI] [PubMed] [Google Scholar]
  121. Sabarth N., Hurwitz R., Meyer T.F., Bumann D. Multiparameter selection of Helicobacter pylori antigens identifies two novel antigens with high protective efficacy. Infect Immun. 2002;70:6499–6503. doi: 10.1128/IAI.70.11.6499-6503.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Santoni V., Molloy M., Rabilloud T. Membrane proteins and proteomics: un amour impossible? Electrophoresis. 2000;21:1054–1070. doi: 10.1002/(SICI)1522-2683(20000401)21:6<1054::AID-ELPS1054>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  123. Sarioglu H., Lottspeich F., Walk T., Jung G., Eckerskorn C. Deamidation as a widespread phenomenon in two-dimensional polyacrylamide gel electrophoresis of human blood plasma proteins. Electrophoresis. 2000;21:2209–2218. doi: 10.1002/1522-2683(20000601)21:11<2209::AID-ELPS2209>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  124. Scheele G.A. Two-dimensional gel analysis of soluble proteins. Charaterization of guinea pig exocrine pancreatic proteins. J Biol Chem. 1975;250:5375–5385. [PubMed] [Google Scholar]
  125. Sibbald M.J., Ziebandt A.K., Engelmann S., Hecker M., de Jong A., Harmsen H.J., Raangs G.C., Stokroos I., Arends J.P., Dubois J.Y., et al. Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol Mol Biol Rev. 2006;70:755–788. doi: 10.1128/MMBR.00008-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Skurnik M., Venho R., Bengoechea J.A., Moriyón I. The lipopolysaccharide outer core of Yersinia enterocolitica serotype O:3 is required for virulence and plays a role in outer membrane integrity. Mol Microbiol. 1999;31:1443–1462. doi: 10.1046/j.1365-2958.1999.01285.x. [DOI] [PubMed] [Google Scholar]
  127. Swanson R.V., Alex L.A., Simon M.I. Histidine and aspartate phosphorylation: two-component systems and the limits of homology. Trends Biochem Sci. 1994;19:485–490. doi: 10.1016/0968-0004(94)90135-x. [DOI] [PubMed] [Google Scholar]
  128. Teng J.L., Woo P.C., Ma S.S., Sit T.H., Ng L.T., Hui W.T., Lau S.K., Yuen K.Y. Ecoepidemiology of Laribacter hongkongensis, a novel bacterium associated with gastroenteritis. J Clin Microbiol. 2005;43:919–922. doi: 10.1128/JCM.43.2.919-922.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Thein M., Sauer G., Paramasivam N., Grin I., Linke D. Efficient subfractionation of gram-negative bacteria for proteomics studies. J Proteome Res. 2010;9:6135–6147. doi: 10.1021/pr1002438. [DOI] [PubMed] [Google Scholar]
  130. Thieringer H.A., Jones P.G., Inouye M. Cold shock and adaptation. Bioessays. 1998;20:49–57. doi: 10.1002/(SICI)1521-1878(199801)20:1<49::AID-BIES8>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  131. Tjalsma H., Antelmann H., Jongbloed J.D., Braun P.G., Darmon E., Dorenbos R., Dubois J.Y., Westers H., Zanen G., Quax W.J., et al. Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol Mol Biol Rev. 2004;68:207–233. doi: 10.1128/MMBR.68.2.207-233.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Traini M., Gooley A.A., Ou K., Wilkins M.R., Tonella L., Sanchez J.C., Hochstrasser D.F., Williams K.L. Towards an automated approach for protein identification in proteome projects. Electrophoresis. 1998;19:1941–1949. doi: 10.1002/elps.1150191112. [DOI] [PubMed] [Google Scholar]
  133. Trost M., Wehmhöner D., Kärst U., Dieterich G., Wehland J., Jänsch L. Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species. Proteomics. 2005;5:1544–1557. doi: 10.1002/pmic.200401024. [DOI] [PubMed] [Google Scholar]
  134. Trülzsch K., Roggenkamp A., Aepfelbacher M., Wilharm G., Ruckdeschel K., Heesemann J. Analysis of chaperone-dependent Yop secretion/translocation and effector function using a mini-virulence plasmid of Yersinia enterocolitica. Int J Med Microbiol. 2003;293:167–177. doi: 10.1078/1438-4221-00251. [DOI] [PubMed] [Google Scholar]
  135. Unlü M., Morgan M.E., Minden J.S. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis. 1997;18:2071–2077. doi: 10.1002/elps.1150181133. [DOI] [PubMed] [Google Scholar]
  136. Völker U., Hecker M. From genomics via proteomics to cellular physiology of the Gram-positive model organism Bacillus subtilis. Cell Microbiol. 2005;7:1077–1085. doi: 10.1111/j.1462-5822.2005.00555.x. [DOI] [PubMed] [Google Scholar]
  137. Wang J., Ying T., Wang H., Shi Z., Li M., He K., Feng E., Wang J., Yuan J., Li T., et al. 2-D reference map of Bacillus anthracis vaccine strain A16R proteins. Proteomics. 2005;5:4488–4495. doi: 10.1002/pmic.200401322. [DOI] [PubMed] [Google Scholar]
  138. Wang Y., Xu A., Knight C., Xu L.Y., Cooper G.J. Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. Potential role in the modulation of its insulin-sensitizing activity. J Biol Chem. 2002;277:19521–19529. doi: 10.1074/jbc.M200601200. [DOI] [PubMed] [Google Scholar]
  139. Washburn M.P., Wolters D., Yates J.R., 3rd Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001;19:242–247. doi: 10.1038/85686. [DOI] [PubMed] [Google Scholar]
  140. Wilkins M.R., Gasteiger E., Sanchez J.C., Bairoch A., Hochstrasser D.F. Two-dimensional gel electrophoresis for proteome projects: the effects of protein hydrophobicity and copy number. Electrophoresis. 1998;19:1501–1505. doi: 10.1002/elps.1150190847. [DOI] [PubMed] [Google Scholar]
  141. Wilkins M.R., Pasquali C., Appel R.D., Ou K., Golaz O., Sanchez J.C., Yan J.X., Gooley A.A., Hughes G., Humphery-Smith I., et al. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y) 1996;14:61–65. doi: 10.1038/nbt0196-61. [DOI] [PubMed] [Google Scholar]
  142. Woo P.C., Lau S.K., Teng J.L., Que T.L., Yung R.W., Luk W.K., Lai R.W., Hui W.T., Wong S.S., Yau H.H., the L Hongkongensis study group et al. Association of Laribacter hongkongensis in community-acquired gastroenteritis with travel and eating fish: a multicentre case-control study. Lancet. 2004;363:1941–1947. doi: 10.1016/S0140-6736(04)16407-6. [DOI] [PubMed] [Google Scholar]
  143. Woo P.C., Lau S.K., Teng J.L., Yuen K.Y. Current status and future directions for Laribacter hongkongensis, a novel bacterium associated with gastroenteritis and traveller’s diarrhoea. Curr Opin Infect Dis. 2005;18:413–419. doi: 10.1097/01.qco.0000180162.76648.c9. [DOI] [PubMed] [Google Scholar]
  144. Woo P.C., Lau S.K., Tse H., Teng J.L., Curreem S.O., Tsang A.K., Fan R.Y., Wong G.K., Huang Y., Loman N.J., et al. The complete genome and proteome of Laribacter hongkongensis reveal potential mechanisms for adaptations to different temperatures and habitats. PLoS Genet. 2009;5:e1000416. doi: 10.1371/journal.pgen.1000416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Yan J.X., Devenish A.T., Wait R., Stone T., Lewis S., Fowler S. Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics. 2002;2:1682–1698. doi: 10.1002/1615-9861(200212)2:12<1682::AID-PROT1682>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  146. Yates J.R., 3rd, Speicher S., Griffin P.R., Hunkapiller T. Peptide mass maps: a highly informative approach to protein identification. Anal Biochem. 1993;214:397–408. doi: 10.1006/abio.1993.1514. [DOI] [PubMed] [Google Scholar]
  147. Yu H.B., Kaur R., Lim S., Wang X.H., Leung K.Y. Characterization of extracellular proteins produced by Aeromonas hydrophila AH-1. Proteomics. 2007;7:436–449. doi: 10.1002/pmic.200600396. [DOI] [PubMed] [Google Scholar]
  148. Yuen K.Y., Woo P.C., Teng J.L., Leung K.W., Wong M.K., Lau S.K. Laribacter hongkongensis gen. nov., sp. nov., a novel gram-negative bacterium isolated from a cirrhotic patient with bacteremia and empyema. J Clin Microbiol. 2001;39:4227–4232. doi: 10.1128/JCM.39.12.4227-4232.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES