Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2013 Apr 3;4(4):259–265. doi: 10.1007/s13238-013-2114-1

Pannexin-1 influences peritoneal cavity cell population but is not involved in NLRP3 inflammasome activation

Hongbin Wang 12114, Yue Xing 12114, Liming Mao 12114, Yi Luo 22114, Lishan Kang 22114, Guangxun Meng 12114,
PMCID: PMC4875518  PMID: 23549611

Abstract

Pannexin-1 (Panx1) forms nonselective large channel in cell plasma membrane and has been shown to be associated with NLRP3 inflammasome activation, ATP release and phagocytes recruitment. In the current study, by manipulation of Panx1 expression in human myeloid cells and application of Panx1 deficient mice, we failed to find a correlation between Panx1 and NLRP3 inflammasome activation, although an interaction between these two proteins was evident. However, in thioglycollate induced peritonitis, Panx1 deficient mice showed much more phagocytes infiltration. Further analyses showed that mice deficient for Panx1 exhibited enlarged F4/80lowGr1Ly6Ccell population in the peritonea. Our study thus reveals an important role for Panx1 in regulation of peritoneal cell population and peritonitis development.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-013-2114-1 and is accessible for authorized users.

Keywords: innate Immunity, inflammasome, NLRP3, Pannexin-1, peritonitis

Electronic supplementary material

13238_2013_2114_MOESM1_ESM.pdf (1.3MB, pdf)

Supplementary material, approximately 1.27 MB.

Footnotes

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-013-2114-1 and is accessible for authorized users.

References

  1. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflamatory disorder. Immunity. 2004;20:3 19–325. doi: 10.1016/S1074-7613(04)00046-9. [DOI] [PubMed] [Google Scholar]
  2. Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H. Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci U S A. 2003;100:13644–13649. doi: 10.1073/pnas.2233464100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, et al. Pannexin 1 channels mediate ‘findme’ signal release and membrane permeability during apoptosis. Nature. 2010;467:8 63–867. doi: 10.1038/nature09413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19:71–82. doi: 10.1016/S1074-7613(03)00174-2. [DOI] [PubMed] [Google Scholar]
  5. Ghosn EE, Cassado AA, Govoni GR, Fukuhara T, Yang Y, Monack DM, Bortoluci KR, Almeida SR, Herzenberg LA. Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc Natl Acad Sci U S A. 2010;107:256 8–2573. doi: 10.1073/pnas.0915000107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gulbransen BD, Bashashati M, Hirota SA, Gui X, Roberts JA, MacDonald JA, Muruve DA, McKay DM, Beck PL, Mawe GM, et al. Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat Med. 2012;18:6 00–604. doi: 10.1038/nm.2679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hu Y, Mao K, Zeng Y, Chen S, Tao Z, Yang C, Sun S, Wu X, Meng G, Sun B. Tripartite-motif protein 30 negatively regulates NLRP3 inflammasome activation by modulating reactive oxygen species production. J Immunol. 2010;185:769 9–7705. doi: 10.4049/jimmunol.1001099. [DOI] [PubMed] [Google Scholar]
  8. Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P, Nunez G. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity. 2007;26:4 33–443. doi: 10.1016/j.immuni.2007.03.008. [DOI] [PubMed] [Google Scholar]
  9. Kienitz MC, Bender K, Dermietzel R, Pott L, Zoidl G. Pannexin 1 constitutes the large conductance cation channel of cardiac myocytes. J Biol Chem. 2011;286:290–298. doi: 10.1074/jbc.M110.163477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Locovei S, Wang J, Dahl G. Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett. 2006;580:239–244. doi: 10.1016/j.febslet.2005.12.004. [DOI] [PubMed] [Google Scholar]
  11. Panchin Y, Kelmanson I, Matz M, Lukyanov K, Usman N, Lukyanov S. A ubiquitous family of putative gap junction molecules. Curr Biol. 2000;10:R4 73–474. doi: 10.1016/S0960-9822(00)00576-5. [DOI] [PubMed] [Google Scholar]
  12. Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J. 2006;25:507 1–5082. doi: 10.1038/sj.emboj.7601378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pelegrin P, Surprenant A. Pannexin-1 couples to maitotoxin-and nigericin-induced interleukin-1beta release through a dye uptake-independent pathway. J Biol Chem. 2007;282:238 6–2394. doi: 10.1074/jbc.M610351200. [DOI] [PubMed] [Google Scholar]
  14. Qu Y, Misaghi S, Newton K, Gilmour LL, Louie S, Cupp JE, Dubyak GR, Hackos D, Dixit VM. Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J Immunol. 2011;186:655 3–6561. doi: 10.4049/jimmunol.1100478. [DOI] [PubMed] [Google Scholar]
  15. Zhang X, Goncalves R, Mosser DM. Curr Protoc Immunol. 2008. The isolation and characterization of murine macrophages. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

13238_2013_2114_MOESM1_ESM.pdf (1.3MB, pdf)

Supplementary material, approximately 1.27 MB.


Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES