Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2013 May 20;4(6):456–466. doi: 10.1007/s13238-013-3019-8

Cytosolic Ca2+ as a multifunctional modulator is required for spermiogenesis in Ascaris suum

Yunlong Shang 1,2, Lianwan Chen 1, Zhiyu Liu 1,2, Xia Wang 1, Xuan Ma 1, Long Miao 1,
PMCID: PMC4875554  PMID: 23686736

Abstract

The dynamic polar polymers actin filaments and microtubules are usually employed to provide the structural basis for establishing cell polarity in most eukaryotic cells. Radially round and immotile spermatids from nematodes contain almost no actin or tubulin, but still have the ability to break symmetry to extend a pseudopod and initiate the acquisition of motility powered by the dynamics of cytoskeleton composed of major sperm protein (MSP) during spermiogenesis (sperm activation). However, the signal transduction mechanism of nematode sperm activation and motility acquisition remains poorly understood. Here we show that Ca2+ oscillations induced by the Ca2+ release from intracellular Ca2+ store through inositol (1,4,5)-trisphosphate receptor are required for Ascaris suum sperm activation. The chelation of cytosolic Ca2+ suppresses the generation of a functional pseudopod, and this suppression can be relieved by introducing exogenous Ca2+ into sperm cells. Ca2+ promotes MSP-based sperm motility by increasing mitochondrial membrane potential and thus the energy supply required for MSP cytoskeleton assembly. On the other hand, Ca2+ promotes MSP disassembly by activating Ca2+/calmodulin-dependent serine/threonine protein phosphatase calcineurin. In addition, Ca2+/camodulin activity is required for the fusion of sperm-specifi c membranous organelle with the plasma membrane, a regulated exocytosis required for sperm motility. Thus, Ca2+ plays multifunctional roles during sperm activation in Ascaris suum.

Keywords: spermiogenesis, Ca2+, major sperm protein, Ascaris suum

References

  1. Abbas M, Foor WE. Ascaris suum: free amino acids and proteins in the pseudocoelom, seminal vesicle, and glandular vas deferens. Exp Parasitol. 1978;45:263–273. doi: 10.1016/0014-4894(78)90068-1. [DOI] [PubMed] [Google Scholar]
  2. Bandyopadhyay J, Lee J, Lee JI, Yu JR, Jee C, Cho JH, Jung S, Lee MH, Zannoni S, Singson A, et al. Calcineurin, a calcium/calmodulin-dependent protein phosphatase, is involved in movement, fertility, egg laying, and growth in Caeno rhabditis elegans. Mol Biol Cell. 2002;13:3281–3293. doi: 10.1091/mbc.E02-01-0005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ben-Aharon I, Brown PR, Etkovitz N, Eddy EM, Shalgi R. The expression of calpain 1 and calpain 2 in spermatogenic cells and spermatozoa of the mouse. Reproduction. 2005;129:435–442. doi: 10.1530/rep.1.00255. [DOI] [PubMed] [Google Scholar]
  4. Bendahmane M, Lynch C, 2nd, Tulsiani DR. Calmodulin signals capacitation and triggers the agonist-induced acrosome reaction in mouse spermatozoa. Arch Biochem Biophys. 2001;390:1–8. doi: 10.1006/abbi.2001.2364. [DOI] [PubMed] [Google Scholar]
  5. Berridge MJ. Calcium signalling, a spatiotemporal phenomenon. In: Joachim K, Marek M, editors. New Comprehensive Biochemistry. 2007. pp. 485–502. [Google Scholar]
  6. Berrios J, Osses N, Opazo C, Arenas G, Mercado L, Benos DJ, Reyes JG. Intracellular Ca2+ homeostasis in rat round spermatids. Biol Cell. 1998;90:391–398. doi: 10.1111/j.1768-322X.1998.tb01048.x. [DOI] [PubMed] [Google Scholar]
  7. Blas GAD, Roggero CM, Tomes CN, Mayorga LS. Dynamics of SNARE assembly and disassembly during sperm acrosomal exocytosis. Plos Biol. 2005;3:e323. doi: 10.1371/journal.pbio.0030323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Breitbart H. Intracellular calcium regulation in sperm capacitation and acrosomal reaction. Mol Cell Endocrinol. 2002;187:139–144. doi: 10.1016/S0303-7207(01)00704-3. [DOI] [PubMed] [Google Scholar]
  9. Castillo Bennett J, Roggero CM, Mancifesta FE, Mayorga LS. Calcineurin-mediated dephosphorylation of synaptotagmin vi is necessary for acrosomal exocytosis. J Biol Chem. 2010;285:26269–26278. doi: 10.1074/jbc.M109.095752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Estrada M, Cárdenas C, Liberona JL, Carrasco MA, Mignery GA, Allen PD, Jaimovich E. Calcium transients in 1B5 myotubes lacking ryanodine receptors are related to inositol trisphosphate receptors. J Biol Chem. 2001;276:22 868–22874. doi: 10.1074/jbc.M100118200. [DOI] [PubMed] [Google Scholar]
  11. Fraire-Zamora JJ, Broitman-Maduro G, Maduro M, Cardullo RA. Evidence for phosphorylation in the MSP cytoskeletal filaments of amoeboid spermatozoa. Int J Biochem Mol Biol. 2011;2:263–273. [PMC free article] [PubMed] [Google Scholar]
  12. Griffiths EJ, Rutter GA. Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Arch Biochem Biophys. 2009;1787:1324–1333. doi: 10.1016/j.bbabio.2009.01.019. [DOI] [PubMed] [Google Scholar]
  13. Gulbransen BD, Bashashati M, Hirota SA, Gui X, Roberts JA, MacDonald JA, Muruve DA, McKay DM, Beck PL, Mawe GM, et al. Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat Med. 2012;18:600–604. doi: 10.1038/nm.2679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Italiano JE, Roberts TM, Stewart M, Fontana CA. Reconstitution in vitro of the motile apparatus from the amoeboid sperm of Ascaris shows that filament assembly and bundling move membranes. Cell. 1996;84:105–114. doi: 10.1016/S0092-8674(00)80997-6. [DOI] [PubMed] [Google Scholar]
  15. Kaupp UB, Kashikar ND, Weyand I. Mechanisms of sperm chemotaxis. Annu Rev Physiol. 2008;70:93–117. doi: 10.1146/annurev.physiol.70.113006.100654. [DOI] [PubMed] [Google Scholar]
  16. Kirichok Y, Navarro B, Clapham DE. Whole-cell patchclamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature. 2006;439:737–740. doi: 10.1038/nature04417. [DOI] [PubMed] [Google Scholar]
  17. Krebs J, Heizmann CW. Calcium-binding proteins and the EF-hand principle. In: Joachim K, Marek M, editors. In New Comprehensive Biochemistry. 2007. pp. 51–93. [Google Scholar]
  18. L’Hernault SW. The genetics and cell biology of spermatogenesis in the nematode C. elegans. Mol Cell Endocrinol. 2009;306:59–65. doi: 10.1016/j.mce.2009.01.008. [DOI] [PubMed] [Google Scholar]
  19. LeClaire LL, 3rd, Stewart M, Roberts TM. A 48 kDa integral membrane phosphoprotein orchestrates the cytoskeletal dynamics that generate amoeboid cell motility in Ascaris sperm. J Cell Sci. 2003;116:2655–2663. doi: 10.1242/jcs.00469. [DOI] [PubMed] [Google Scholar]
  20. Li R, Gundersen GG. Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nature reviews. Mol Cell Biol. 2008;9:860–873. doi: 10.1038/nrm2522. [DOI] [PubMed] [Google Scholar]
  21. Ma X, Zhao Y, Sun W, Shimabukuro K, Miao L. Transformation: how do nematode sperm become activated and crawl? Protein & Cell. 2012;3:755–761. doi: 10.1007/s13238-012-2936-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miao L, Vanderlinde O, Liu J, Grant RP, Wouterse A, Shimabukuro K, Philipse A, Stewart M, Roberts TM. The role of filament-packing dynamics in powering amoeboid cell motility. Proc Natl Acad Sci U S A. 2008;105:5390–5395. doi: 10.1073/pnas.0708416105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Miao L, Vanderlinde O, Stewart M, Roberts TM. Retraction in amoeboid cell motility powered by cytoskeletal dynamics. Science. 2003;302:1405–1407. doi: 10.1126/science.1089129. [DOI] [PubMed] [Google Scholar]
  24. Roberts TM. Major sperm protein. Curr Biol. 2005;15:R153–153. doi: 10.1016/j.cub.2005.02.036. [DOI] [PubMed] [Google Scholar]
  25. Roberts TM, Salmon ED, Stewart M. Hydrostatic pressure shows that lamellipodial motility in Ascaris sperm requires membrane-associated major sperm protein filament nucleation and elongation. J Cell Biol. 1998;140:367–375. doi: 10.1083/jcb.140.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roberts TM, Stewart M. Acting like actin. The dynamics of the nematode major sperm protein (msp) cytoskeleton indicate a push-pull mechanism for amoeboid cell motility. J Cell Biol. 2000;149:7–12. doi: 10.1083/jcb.149.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shakes DC, Ward S. Initiation of spermiogenesis in C. elegans: A pharmacological and genetic analysis. Dev Biol. 1989;134:189–200. doi: 10.1016/0012-1606(89)90088-2. [DOI] [PubMed] [Google Scholar]
  28. Shimabukuro K, Noda N, Stewart M, Roberts TM. Reconstitution of amoeboid motility in vitro identifies a motorindependent mechanism for cell body retraction. Curr Biol. 2011;21:1727–1731. doi: 10.1016/j.cub.2011.08.047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Si Y, Olds-Clarke P. Evidence for the involvement of calmodulin in mouse sperm capacitation. Biol Reprod. 2000;62:1231–1239. doi: 10.1095/biolreprod62.5.1231. [DOI] [PubMed] [Google Scholar]
  30. Smith JR, Stanfield GM. TRY-5 is a sperm-activating protease in caenorhabditis elegans seminal fl uid. PLoS Genet. 2011;7:e1002375. doi: 10.1371/journal.pgen.1002375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sperry AO. The dynamic cytoskeleton of the developing male germ cell. Biol Cell. 2012;104:297–305. doi: 10.1111/boc.201100102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Teves ME, Guidobaldi HA, Unates DR, Sanchez R, Miska W, Publicover SJ, Morales Garcia AA, Giojalas LC. Molecular mechanism for human sperm chemotaxis mediated by progesterone. PLoS One. 2009;4:e8211. doi: 10.1371/journal.pone.0008211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ward S, Hogan E, Nelson GA. The initiation of spermiogenesis in the nematode Caenorhabditis elegans. Dev Biol. 1983;98:70–79. doi: 10.1016/0012-1606(83)90336-6. [DOI] [PubMed] [Google Scholar]
  34. Washington NL, Ward S. FER-1 regulates Ca2+ -mediated membrane fusion during C. elegans spermatogenesis. J Cell Sci. 2006;119:2552–2562. doi: 10.1242/jcs.02980. [DOI] [PubMed] [Google Scholar]
  35. Yi K, Buttery SM, Stewart M, Roberts TM. A Ser/Thr kinase required for membrane-associated assembly of the major sperm protein motility apparatus in the amoeboid sperm of Ascaris. Mol Biol Cell. 2007;18:1816–1825. doi: 10.1091/mbc.E06-08-0741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yi K, Wang X, Emmett MR, Marshall AG, Stewart M, Roberts TM. Dephosphorylation of major sperm protein (MSP) fiber protein 3 by protein phosphatase 2A during cell body retraction in the MSP-based amoeboid motility of Ascaris sperm. Mol Biol Cell. 2009;20:3200–3208. doi: 10.1091/mbc.E09-03-0240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zeng HT, Tulsiani DR. Calmodulin antagonists differentially affect capacitation-associated protein tyrosine phosphorylation of mouse sperm components. J Cell Sci. 2003;116:1981–1989. doi: 10.1242/jcs.00396. [DOI] [PubMed] [Google Scholar]
  38. Zhao Y, Sun W, Zhang P, Chi H, Zhang MJ, Song CQ, Ma X, Shang Y, Wang B, Hu Y, et al. Nematode sperm maturation triggered by protease involves sperm-secreted serine protease inhibitor (Serpin) Proc Natl Acad Sci U S A. 2012;109:1542–1547. doi: 10.1073/pnas.1109912109. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES