Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2013 May 23;4(6):467–474. doi: 10.1007/s13238-013-3025-x

Discovery of a novel gene involved in autolysis of Clostridium cells

Liejian Yang 1,2, Guanhui Bao 1,2, Yan Zhu 1, Hongjun Dong 1,, Yanping Zhang 1, Yin Li 1,
PMCID: PMC4875555  PMID: 23702687

Abstract

Cell autolysis plays important physiological roles in the life cycle of clostridial cells. Understanding the genetic basis of the autolysis phenomenon of pathogenic Clostridium or solvent producing Clostridium cells might provide new insights into this important species. Genes that might be involved in autolysis of Clostridium acetobutylicum, a model clostridial species, were investigated in this study. Twelve putative autolysin genes were predicted in C. acetobutylicum DSM 1731 genome through bioinformatics analysis. Of these 12 genes, gene SMB_G3117 was selected for testing the in tracellular autolysin activity, growth profile, viable cell numbers, and cellular morphology. We found that overexpression of SMB_G3117 gene led to earlier ceased growth, significantly increased number of dead cells, and clear electrolucent cavities, while disruption of SMB_G3117 gene exhibited remarkably reduced intracellular autolysin activity. These results indicate that SMB_G3117 is a novel gene involved in cellular autolysis of C. acetobutylicum.

Keywords: cell autolysis, autolysins, Clostridium, gene SMB_G3117

Contributor Information

Liejian Yang, Email: yli@im.ac.cn.

Hongjun Dong, Email: redarmy305@gmail.com.

References

  1. Allcock ER, Reid SJ, Jones DT, Woods DR. Autolytic activity and an autolysis-deficient mutant of Clostridium acetobutylicum. Appl Environ Microbiol. 1981;42:929–935. doi: 10.1128/aem.42.6.929-935.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andreesen J, Bahl H, Gottschalk G. Introduction to the physiology and biochemistry of the genus Clostridium. In: Minton N, Clarke D, editors. Clostridia. New York and London: Plenum Press; 1989. pp. 27–62. [Google Scholar]
  3. Bao G, Wang R, Zhu Y, Dong H, Mao S, Zhang Y, Chen Z, Li Y, Ma Y. Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent-producing strain with multireplicon genome architecture. J Bacteriol. 2011;193:5007–5008. doi: 10.1128/JB.05596-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barber JM, Robb FT, Webster JR, Woods DR. Bacteriocin production by Clostridium acetobutylicum in an industrial fermentation process. Appl Environ Microbiol. 1979;37:433–437. doi: 10.1128/aem.37.3.433-437.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blackman SA, Smith TJ, Foster SJ. The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiol-UK. 1998;144:73–82. doi: 10.1099/00221287-144-1-73. [DOI] [PubMed] [Google Scholar]
  6. ChapotChartier MP. Autolysins of lactic acid bacteria. Lait. 1996;76:91–109. doi: 10.1051/lait:19961-29. [DOI] [Google Scholar]
  7. Croux C, Canard B, Goma G, Soucaille P. Autolysis of Clostrtdium acetobutylicum ATCC 824. J Gen Microbiol. 1992;138:861–869. doi: 10.1099/00221287-138-5-861. [DOI] [PubMed] [Google Scholar]
  8. Croux C, Canard B, Goma G, Soucaille P. Purification and characterization of an extracellular muramidase of Clostridium acetobutylicum ATCC 824 that acts on non-N-acetylated peptidoglycan. Appl Environ Microbiol. 1992;58:1075–1081. doi: 10.1128/aem.58.4.1075-1081.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Croux C, Garcia JL. Reconstruction and expression of the autolytic gene from Clostridium acetobutylicum ATCC 824 in Escherichia coli. FEMS Microbiol Lett. 1992;74:13–20. doi: 10.1111/j.1574-6968.1992.tb05336.x. [DOI] [PubMed] [Google Scholar]
  10. Dong H, Tao W, Zhang Y, Li Y. Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: A useful tool for strain engineering. Metab Eng. 2012;14:59–67. doi: 10.1016/j.ymben.2011.10.004. [DOI] [PubMed] [Google Scholar]
  11. Dong H, Zhang Y, Dai Z, Li Y. Engineering Clostridium strain to accept unmethylated DNA. PLoS ONE. 2010;5:e9038. doi: 10.1371/journal.pone.0009038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eltsov M, Zuber B. Transmission electron microscopy of the bacterial nucleoid. J Struct Biol. 2006;156:246–254. doi: 10.1016/j.jsb.2006.07.007. [DOI] [PubMed] [Google Scholar]
  13. Foster SJ. The role and regulation of cell-wall structural dynamics during differentiation of endospore-forming bacteria. J Appl Bacteriol. 1994;76:S25–39. doi: 10.1111/j.1365-2672.1994.tb04355.x. [DOI] [PubMed] [Google Scholar]
  14. Foster SJ. Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. J Bacteriol. 1995;177:5723–5725. doi: 10.1128/jb.177.19.5723-5725.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Garcia JL, Garcia E, Sanchezpuelles JM, Lopez R. Identification of a lytic enzyme of Clostridium acetobutylicum that degrades choline-containing pneumococcal cell walls. Fems MicrobiolLett. 1988;52:133–137. doi: 10.1016/0378-1097(88)90313-8. [DOI] [Google Scholar]
  16. Hartmanis MG, Gatenbeck S. Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate. Appl Environ Microbiol. 1984;47:1277–1283. doi: 10.1128/aem.47.6.1277-1283.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM, Scott JC, Minton NP. The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Methods. 2010;80:49–55. doi: 10.1016/j.mimet.2009.10.018. [DOI] [PubMed] [Google Scholar]
  18. Heidrich C, Templin MF, Ursinus A, Merdanovic M, Berger J, Schwarz H, de Pedro MA, Holtje JV. Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol Microbiol. 2001;41:167–178. doi: 10.1046/j.1365-2958.2001.02499.x. [DOI] [PubMed] [Google Scholar]
  19. Hirsch A, Grinsted E. Methods for the growth and enumeration of anaerobic spore-formers from cheese, with observations on the effect of nisin. J. Dairy Res. 1954;21:101–110. doi: 10.1017/S0022029900007196. [DOI] [Google Scholar]
  20. Holtje JV. From growth to autolysis: the murein hydrolases in Escherichia coli. Arch Microbiol. 1995;164:243–254. doi: 10.1007/BF02529958. [DOI] [PubMed] [Google Scholar]
  21. Jayaswal RK, Lee YI, Wilkinson BJ. Cloning and expression of a Staphylococcus aureus gene encoding a peptidoglycan hydrolase activity. J Bacteriol. 1990;172:5783–5788. doi: 10.1128/jb.172.10.5783-5788.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jones, S.W., Paredes, C.J., Tracy, B., Cheng, N., Sillers, R., Senger, R.S., and Papoutsakis, E.T. (2008). The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol 9 R114. [DOI] [PMC free article] [PubMed]
  23. Ju CX, Gu HW, Lu CP. Characterization and functional analysis of atl, a novel gene encoding autolysin in Streptococcus suis. J Bacteriol. 2012;194:1464–1473. doi: 10.1128/JB.06231-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kuehne SA, Heap JT, Cooksley CM, Cartman ST, Minton NP. Strain Engineering (Springer) 2011. ClosTron-mediated engineering of Clostridium; pp. 389–407. [DOI] [PubMed] [Google Scholar]
  25. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS. Fermentative butanol production by Clostridia. Biotechnol Bioeng. 2008;101:209–228. doi: 10.1002/bit.22003. [DOI] [PubMed] [Google Scholar]
  26. Lutke-Eversloh T, Bahl H. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol. 2011;22:634–647. doi: 10.1016/j.copbio.2011.01.011. [DOI] [PubMed] [Google Scholar]
  27. Mermelstein LD, Welker NE, Bennett GN, Papoutsakis ET. Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Nat Biotech. 1992;10:190–195. doi: 10.1038/nbt0292-190. [DOI] [PubMed] [Google Scholar]
  28. Nolling J, Breton G, Omelchenko MV, Makarova KS, Zeng QD, Gibson R, Lee HM, Dubois J, Qiu DY, Hitti J, et al. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol. 2001;183:4823–4838. doi: 10.1128/JB.183.16.4823-4838.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rashid MH, Kuroda A, Sekiguchi J. Bacillus subtilis mutant deficient in the major autolytic amidase and glucosaminidase is impaired in motility. FEMS Microbiol Lett. 1993;112:135–140. doi: 10.1111/j.1574-6968.1993.tb06438.x. [DOI] [PubMed] [Google Scholar]
  30. Rehner SA, Samuels GJ. Taxonomy and phylogeny of gliocladium analyzed from nuclear large subunit ribosomal DNA-sequences. Mycol Res. 1994;98:625–634. doi: 10.1016/S0953-7562(09)80409-7. [DOI] [Google Scholar]
  31. Shockman GD, Holtje J-V. Microbial peptidoglycan (murein) hydrolases. In: Ghuysen J-M, Hakenbeck R, editors. Bacterial Cell Wall. Elsevier: Amsterdam; 1994. pp. 131–166. [Google Scholar]
  32. Smith TJ, Blackman SA, Foster SJ. Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiol-UK. 2000;146:249–262. doi: 10.1099/00221287-146-2-249. [DOI] [PubMed] [Google Scholar]
  33. Tamura H, Yamada A, Kato H. Identification and characterization of an autolysin gene, atlA, from Streptococcus criceti. J Microbiol. 2012;50:777–784. doi: 10.1007/s12275-012-2187-1. [DOI] [PubMed] [Google Scholar]
  34. Webster JR, Reid SJ, Jones DT, Woods DR. Purification and characterization of an autolysin from Clostridium acetobutylicum. Appl Environ Microbiol. 1981;41:371–374. doi: 10.1128/aem.41.2.371-374.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yoshino S, Ogata S, Hayashida S. Some properties of autolysin of Clostridium saccharoperbutylacetonicum. Agric Biol Chem. 1982;46:1243–1248. doi: 10.1271/bbb1961.46.1243. [DOI] [Google Scholar]
  36. Zhang YH, Zhang YP, Zhu Y, Mao SM, Li Y. Proteomic analyses to reveal the protective role of glutathione inresistance of Lactococcus lactis to osmotic stress. Appl Environ Microbiol. 2010;76:3177–3186. doi: 10.1128/AEM.02942-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zingaro KA, Terry Papoutsakis E. GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metab Eng. 2013;15:196–205. doi: 10.1016/j.ymben.2012.07.009. [DOI] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES