Urinary bladder cancer is the 7th most common cancer in Western Europe (Ferlay et al., 2012[3]). The most relevant risk factors are occupational exposure to aromatic amines and polycyclic aromatic hydrocarbons as well as cigarette smoking (Golka et al., 2012[6], 2009[5], 2004[11]; Schwender et al., 2012[23]). Moreover, polymorphisms of phase II metabolizing enzymes are well-known since decades to increase bladder cancer risk, in particular, the deletion variant of the phase II metabolizing enzyme glutathione-S-transferase M1 (GSTM1) (Ovsiannikov et al., 2012[18]; Golka et al., 2009[5], 1997[9]; Arand et al., 1996[1]) and polymorphisms in the N-acetyltranferase 2 (NAT2) gene leading to a reduced acetylation capacity (Selinski et al., 2011[24]; Moore et al., 2011[16]; Golka et al., 2002[7], 1996[8]), and currently their influence on prognosis is investigated (Roth et al., 2012[21]; Nørskov et al., 2011[17]). Recently, genome-wide association studies (GWAS) have identified several novel nucleotide polymorphisms (SNPs) as associated with urinary bladder cancer (UBC) risk and most of them could be confirmed in independent follow-up case-control series (review: Golka et al., 2011[10]; Table 1(Tab. 1) [References in Table 1: Kiemeney et al., 2008[13]; Golka et al., 2009[5]; Kiemeney et al., 2008[13]; Lehmann et al., 2010[14]; Rafnar et al., 2009[19]; Wu et al., 2009[27]; Fu et al., 2012[4]; Kiemeney et al., 2010[12]; Rothman et al., 2010[22]; Selinski et al., 2012[25]; Tang et al., 2012[26]; Rothman et al., 2010[22]; Selinski et al., 2011[24]; Rothman et al., 2010[22]; Rothman et al., 2010[22]; Rothman et al., 2010[22]; Rafnar et al., 2011[20]). So far SNPs at ten chromosomal locations, besides GSTM1, have been identified. The functions of the closest genes are related to maintenance of DNA integrity, apoptosis and cell cycle control as well as detoxification of carcinogens. Considering the large size of the case-control series with more than 4,500 cases and 45,000 controls (Rafnar et al., 2011[20]; Kiemeney et al., 2010[12]; Rothman et al., 2010[22]), the high density of polymorphisms on SNP chips as well as the accuracy of SNP imputation algorithms it may be regarded as likely that the most influential SNPs have now been discovered. However, one open question remains: to date it is completely unknown, if the novel SNPs interact. If so, will they result in less than additive, additive or even over additive risks? How high is the population attributable risk of the combined influence of all polymorphisms? And how important is the combined genetic risk compared to the risk attributable to cigarette smoking and occupational exposure to bladder carcinogens? Considering the recent progress in genome-wide association studies it can be expected that answers to these questions will soon be available.
Table 1. Currently confirmed genetic variants that are associated with bladder cancer risk. Polymorphisms and related genes are printed bold, risk alleles are given in brackets.
First analyses beyond the standard single SNP analyses in case-control designs yield promising results (Binder et al., 2012[2]; Menashe et al., 2012[15]; Schwender et al., 2012[23]).
References
- 1.Arand M, Mühlbauer R, Hengstler J, Jäger E, Fuchs J, Winkler L, et al. A multiplex polymerase chain reaction protocol for the simultaneous analysis of the glutathione S-transferase GSTM1 and GSTT1 polymorphisms. Anal Biochem. 1996;236:184–186. doi: 10.1006/abio.1996.0153. [DOI] [PubMed] [Google Scholar]
- 2.Binder H, Müller T, Schwender H, Golka K, Steffens M, Hengstler JG, et al. Cluster-localized sparse logistic regression for SNP data. Stat Appl Genet Mol Biol. 2012 Aug 14;11(4) doi: 10.1515/1544-6115.1694. Available from: http://dx.doi.org/10.1515/1544-6115.1694. [DOI] [PubMed] [Google Scholar]
- 3.Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Lyon: International Agency for Research on Cancer; 2010. [Nov 09, 2012]. GLOBOCAN. 2008 v2.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 10. Available from: http://globocan.iarc.fr. [Google Scholar]
- 4.Fu YP, Kohaar I, Rothman N, Earl J, Figueroa JD, Ye Y, et al. Common genetic variants in the PSCA gene influence gene expression and bladder cancer risk. Proc Natl Acad Sci U S A. 2012;109:4974–4979. doi: 10.1073/pnas.1202189109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Golka K, Hermes M, Selinski S, Blaszkewicz M, Bolt HM, Roth G, et al. Susceptibility to urinary bladder cancer: relevance of rs9642880[T], GSTM1 0/0 and occupational exposure. Pharmacogenet Genom. 2009;19:903–906. doi: 10.1097/FPC.0b013e328331b554. [DOI] [PubMed] [Google Scholar]
- 6.Golka K, Kopps S, Prager HM, Mende S, Thiel R, Jungmann O, et al. Bladder cancer in crack testers applying azo dye-based sprays to metal bodies. J Toxicol Environ Health A. 2012;75:566–571. doi: 10.1080/15287394.2012.675309. [DOI] [PubMed] [Google Scholar]
- 7.Golka K, Prior V, Blaszkewicz M, Bolt HM. The enhanced bladder cancer susceptibility of NAT2 slow acetylators towards aromatic amines: a review considering ethnic differences. Toxicol Lett. 2002;128:229–241. doi: 10.1016/s0378-4274(01)00544-6. [DOI] [PubMed] [Google Scholar]
- 8.Golka K, Prior V, Blaszkewicz M, Cascorbi I, Schöps W, Kierfeld G, et al. Occupational history and genetic N-acetyltransferase polymorphism in urothelial cancer patients of Leverkusen, Germany. Scand J Work Environ Health. 1996;22:332–338. doi: 10.5271/sjweh.150. [DOI] [PubMed] [Google Scholar]
- 9.Golka K, Reckwitz T, Kempkes M, Cascorbi I, Blaskewicz M, Reich SE, et al. N-Acetyltransferase 2 (NAT2) and glutathione S-transferase µ (GSTM1) in bladder-cancer patients in a highly industrialized area. Int J Occup Environ Health. 1997;3:105–110. doi: 10.1179/107735297800407686. [DOI] [PubMed] [Google Scholar]
- 10.Golka K, Selinski S, Lehmann ML, Blaszkewicz M, Marchan R, Ickstadt K, et al. Genetic variants in urinary bladder cancer: collective power of the "wimp SNPs". Arch Toxicol. 2011;85:539–554. doi: 10.1007/s00204-011-0676-3. [DOI] [PubMed] [Google Scholar]
- 11.Golka K, Wiese A, Assennato G, Bolt HM. Occupational exposure and urological cancer. World J Urol. 2004;21:382–391. doi: 10.1007/s00345-003-0377-5. [DOI] [PubMed] [Google Scholar]
- 12.Kiemeney LA, Sulem P, Besenbacher S, Vermeulen SH, Sigurdsson A, Thorleifsson G, et al. A sequence variant at 4p16.3 confers susceptibility to urinary bladder cancer. Nat Genet. 2010;42:415–419. doi: 10.1038/ng.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Kiemeney LA, Thorlacius S, Sulem P, Geller F, Aben KK, Stacey SN, et al. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet. 2008;40:1307–1312. doi: 10.1038/ng.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Lehmann ML, Selinski S, Blaszkewicz M, Orlich M, Ovsiannikov D, Moormann O, et al. Rs710521[A] on chromosome 3q28 close to TP63 is associated with increased urinary bladder cancer risk. Arch Toxicol. 2010;84:967–978. doi: 10.1007/s00204-010-0617-6. [DOI] [PubMed] [Google Scholar]
- 15.Menashe I, Figueroa JD, Garcia-Closas M, Chatterjee N, Malats N, Picornell A, et al. Large-scale pathway-based analysis of bladder cancer genome-wide association data from five studies of European background. PLoS One. 2012;7:e29396. doi: 10.1371/journal.pone.0029396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Moore LE, Baris DR, Figueroa JD, Garcia-Closas M, Karagas MR, Schwenn MR, et al. GSTM1 null and NAT2 slow acetylation genotypes, smoking intensity and bladder cancer risk: results from the New England bladder cancer study and NAT2 meta-analysis. Carcinogenesis. 2011;32:182–189. doi: 10.1093/carcin/bgq223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Nørskov MS, Frikke-Schmidt R, Bojesen SE, Nordestgaard BG, Loft S, Tybjærg-Hansen A. Copy number variation in glutathione-S-transferase T1 and M1 predicts incidence and 5-year survival from prostate and bladder cancer, and incidence of corpus uteri cancer in the general population. Pharmacogenomics J. 2011;11:292–299. doi: 10.1038/tpj.2010.38. [DOI] [PubMed] [Google Scholar]
- 18.Ovsiannikov D, Selinski S, Lehmann ML, Blaszkewicz M, Moormann O, Haenel MW, et al. Polymorphic enzymes, urinary bladder cancer risk, and structural change in the local industry. J Toxicol Environ Health A. 2012;75:557–565. doi: 10.1080/15287394.2012.675308. [DOI] [PubMed] [Google Scholar]
- 19.Rafnar T, Sulem P, Stacey SN, Geller F, Gudmundsson J, Sigurdsson A, et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet. 2009;41:221–227. doi: 10.1038/ng.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Rafnar T, Vermeulen SH, Sulem P, Thorleifsson G, Aben KK, Witjes JA, et al. European genome-wide association study identifies SLC14A1 as a new urinary bladder cancer susceptibility gene. Hum Mol Genet. 2011;20:4268–4281. doi: 10.1093/hmg/ddr303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Roth E, Selinski S, Schikowsky C, Seidel T, Volkert F, Blaszkewicz M, et al. Bladder cancer survival in a former industrial area in Saxony-Anhalt, Germany. J Toxicol Environ Health A. 2012;75:1216–1225. doi: 10.1080/15287394.2012.709168. [DOI] [PubMed] [Google Scholar]
- 22.Rothman N, Garcia-Closas M, Chatterjee N, Malats N, Wu X, Figueroa JD, et al. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat Genet. 2010;42:978–984. doi: 10.1038/ng.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Schwender HR, Selinski S, Blaszkewicz M, Marchan R, Ickstadt K, Golka K, et al. Distinct SNP combinations confer susceptibility to urinary bladder cancer in smokers and non-smokers. Plos One. 2012;accepted doi: 10.1371/journal.pone.0051880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Selinski S, Blaszkewicz M, Lehmann ML, Ovsiannikov D, Moormann O, Guballa C, et al. Genotyping NAT2 with only two SNPs (rs1041983 and rs1801280) outperforms the tagging SNP rs1495741 and is equivalent to the conventional 7-SNP NAT2 genotype. Pharmacogenet Genomics. 2011;21:673–678. doi: 10.1097/FPC.0b013e3283493a23. [DOI] [PubMed] [Google Scholar]
- 25.Selinski S, Lehmann ML, Blaszkewicz M, Ovsiannikov D, Moormann O, Guballa C, et al. Rs11892031[A] on chromosome 2q37 in an intronic region of the UGT1A locus is associated with urinary bladder cancer risk. Arch Toxicol. 2012;86:1369–1378. doi: 10.1007/s00204-012-0854-y. [DOI] [PubMed] [Google Scholar]
- 26.Tang W, Fu YP, Figueroa JD, Malats N, Garcia-Closas M, Chatterjee N, et al. Mapping of the UGT1A locus identifies an uncommon coding variant that affects mRNA expression and protects from bladder cancer. Hum Mol Genet. 2012;21:1918–1930. doi: 10.1093/hmg/ddr619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Wu X, Ye Y, Kiemeney LA, Sulem P, Rafnar T, Matullo G, et al. Genetic variation in the prostate stem cell antigen gene PSCA confers susceptibility to urinary bladder cancer. Nat Genet. 2009;41:991-5. Erratum in Nat Genet. 2009;41:1156. doi: 10.1038/ng.421. [DOI] [PMC free article] [PubMed] [Google Scholar]

