Skip to main content
Annals of Cardiac Anaesthesia logoLink to Annals of Cardiac Anaesthesia
letter
. 2015 Oct-Dec;18(4):577–578. doi: 10.4103/0971-9784.166473

Role of phenoxybenzamine in perioperative clinical practice

Sambhunath Das 1,, Pankaj Kumar 1, Usha Kiran 1
PMCID: PMC4881667  PMID: 26440247

The Editor,

Phenoxybenzamine (PBZ) is a long-acting α-adrenergic receptor blocking drug.[1] It is a haloalkylamine derivative, chemically related to nitrogen mustard, and the molecular configuration responsible for the blockade is a highly reactive carbonium ion formed on cleavage of the tertiary amine ring.

PBZ is recommended for the treatment of malignant hypertension in situations such as pheochromocytoma. Preoperatively, PBZ aids in the control of blood pressure, permits correction of the contracted plasma volume, and protects against catecholamine-induced cardiac damage.[2] The use of PBZ is now limited by shorter acting alpha blocking drugs. Subsequently, PBZ was used with promising better improvement of systemic oxygen delivery and balancing the pulmonary to systemic blood flow by reducing the systemic vascular resistance in hypoplastic left heart syndrome undergoing Norwood procedure.[3] This is still practiced by many centers. The uses of PBZ have further extended to hypotensive anesthesia, prevent spasm in radial artery before grafting in coronary artery bypass surgery, causalgia, Raynaud's phenomenon, and autonomic hyperreflexia.[4,5] However, prolonged hypotension and reflex tachycardia from PBZ created dilemma in the minds of physicians.

The use of PBZ during pediatric cardiac surgery facilitates higher pump flow during cardiopulmonary bypass (CPB) and is associated with less metabolic acidosis postoperatively.[6,7] In addition, PBZ was found to be more effective than sodium nitroprusside in improving tissue perfusion after CPB.[8] The neonatal heart is more susceptible to exogenous catecholamine-induced cardiotoxicity.[9] Hence, vasodilatory therapy can play a key role in improving cardiac output by decreasing afterload without affecting the contractility. A combination of PBZ and NTG is a low-cost alternative for perioperative control of pulmonary arterial pressure by reducing the pulmonary blood flow from vasodilation thereby decreasing the right ventricular load.[10] In authors’ institution, PBZ is used in perioperative hemodynamic management of neonatal, congenital, and conditions with increased Qp cardiac surgical patients with better outcome.[7,10,11]

Hypotension and tachycardia due to PBZ can be managed with adequate preload, proper dosing, and alternative vasoconstrictor. When exogenous sympathomimetics are administered after α blockade from PBZ, their vasoconstrictive effect is inhibited resulting in exaggerated vasodilatory effect. This is most commonly found with the use of adrenaline/epinephrine after PBZ. Epinephrine administration cause severe hypotension, low cardiac output, and tachycardia because of the refractory α-receptor blockade and unopposed ί-receptor activity.[1] The recommended treatment of PBZ-induced hypotension is norepinephrine infusion because some of the receptors remain free of the drug. Vasopressin is an effective antidote for PBZ-induced vasodilation. Vasopressin acts on smooth muscle V1 receptors and is able to overcome its effect.[12]

In summary, PBZ has a therapeutic role for the treatment of hypertension in pheochromocytoma, control of systemic vascular resistance in congenital heart surgery, and balancing the pulmonary to systemic blood flow in severe pulmonary hypertension. It offers convenient and versatile dosing because of the oral and parenteral administration. The intraoperative, postoperative, and intensive care setting use is safe with continuous hemodynamic monitoring and delivers the best results with excellent outcome in specific conditions. The potent hypotensive effects alarm the judicious and titrated use of PBZ.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

  • 1.Westfall TC, Westfall DP. 12th ed. USA: McGraw-Hill Companies, Inc; 2011. Adrenergic Agonists and Antagonists. Goodman and Gilman's: The Pharmacological Basis of Therapeutics; pp. 148–87. [Google Scholar]
  • 2.Prys-Roberts C. Phaeochromocytoma – Recent progress in its management. Br J Anaesth. 2000;85:44–57. doi: 10.1093/bja/85.1.44. [DOI] [PubMed] [Google Scholar]
  • 3.Tweddell JS, Hoffman GM, Mussatto KA, Fedderly RT, Berger S, Jaquiss RD, et al. Improved survival of patients undergoing palliation of hypoplastic left heart syndrome: Lessons learned from 115 consecutive patients. Circulation. 2002;106(12 Suppl 1):I82–9. [PubMed] [Google Scholar]
  • 4.Brown TC. Early experiences of vasodilators and hypotensive anesthesia in children. Paediatr Anaesth. 2012;22:720–2. doi: 10.1111/j.1460-9592.2012.03799.x. [DOI] [PubMed] [Google Scholar]
  • 5.Kulik A, Rubens FD, Gunning D, Bourke ME, Mesana TG, Ruel M. Radial artery graft treatment with phenoxybenzamine is clinically safe and may reduce perioperative myocardial injury. Ann Thorac Surg. 2007;83:502–9. doi: 10.1016/j.athoracsur.2006.09.089. [DOI] [PubMed] [Google Scholar]
  • 6.Mossad E, Motta P, Sehmbey K, Toscana D. The hemodynamic effects of phenoxybenzamine in neonates, infants, and children. J Clin Anesth. 2008;20:94–8. doi: 10.1016/j.jclinane.2007.09.006. [DOI] [PubMed] [Google Scholar]
  • 7.Bisoi AK, Sharma P, Chauhan S, Reddy SM, Das S, Saxena A, et al. Primary arterial switch operation in children presenting late with d-transposition of great arteries and intact ventricular septum. When is it too late for a primary arterial switch operation? Eur J Cardiothorac Surg. 2010;38:707–13. doi: 10.1016/j.ejcts.2010.03.037. [DOI] [PubMed] [Google Scholar]
  • 8.Motta P, Mossad E, Toscana D, Zestos M, Mee R. Comparison of phenoxybenzamine to sodium nitroprusside in infants undergoing surgery. J Cardiothorac Vasc Anesth. 2005;19:54–9. doi: 10.1053/j.jvca.2004.11.010. [DOI] [PubMed] [Google Scholar]
  • 9.Caspi J, Coles JG, Benson LN, Herman SL, Diaz RJ, Augustine J, et al. Age-related response to epinephrine-induced myocardial stress.A functional and ultrastructural study. Circulation. 1991;84(5 Suppl):III394–9. [PubMed] [Google Scholar]
  • 10.Kiran U, Makhija N, Das SN, Bhan A, Airan B. Combination of phenoxybenzamine and nitroglycerin: Effective control of pulmonary artery pressures in children undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2005;19:274–5. doi: 10.1053/j.jvca.2005.01.014. [DOI] [PubMed] [Google Scholar]
  • 11.Das S, Nanda S, Bisoi AK, Makhija N. Effects of two different doses of phenoxybenzamine during cardiopulmonary bypass in infants undergoing arterial switch operation for transposition of great arteries. J Cardiovasc Surg Med. 2015;1:17–21. [Google Scholar]
  • 12.O’Blenes SB, Roy N, Konstantinov I, Bohn D, Van Arsdell GS. Vasopressin reversal of phenoxybenzamine-induced hypotension after the Norwood procedure. J Thorac Cardiovasc Surg. 2002;123:1012–3. doi: 10.1067/mtc.2002.122207. [DOI] [PubMed] [Google Scholar]

Articles from Annals of Cardiac Anaesthesia are provided here courtesy of Wolters Kluwer -- Medknow Publications

RESOURCES