Abstract
Bilingualism is the ability to use two or more languages with equal or near equal fluency. How the brain, often seamlessly, selects, controls, and switches between languages is an enigma. Neuroimaging studies offer the unique opportunity to probe the mechanisms underlying bilingual brain function. Non-invasive methods, in particular, functional MRI (fMRI) and event-related potentials (ERPs), have allowed examination in healthy control populations. Whole-head magnetoencephalography (MEG), a relatively new addition to the cadre of neuroimaging tools, offers a combination of the high spatial resolution of fMRI with the high temporal resolution of ERPs. Thus far, MEG has been applied to the studies of bilingual receptive language, or bilingual language comprehension. MEG has not yet been applied to the study of bilingual language production as such studies have faced more challenges (see Salmelin, 2007 for a review), and these have only recently been addressed. Here, we review the literature on MEG expressive language studies and point out a direction for the application of MEG to the study of bilingual language production.
Keywords: magnetoencephalography, bilingualism, expressive language
References
- [1].Grosjean F. Another view of bilingualism. In: Harris R., editor. Cognitive Processing in Bilinguals. Amsterdam: Elsevier; 1992. pp. 51–62. [Google Scholar]
- [2].Crystal D. English as a Global Language. Cambridge, UK: Cambridge University Press; 1997. [Google Scholar]
- [3].Charlton M.H. Aphasia in bilingual and polyglot patients: a neurological and psychological study. J Speech Hear Dis. 1964;29:307–311. doi: 10.1044/jshd.2903.301. [DOI] [PubMed] [Google Scholar]
- [4].Critchley M. Aphasia in polyglots and bilinguals. Brain Lang. 1974;1:15–27. doi: 10.1016/0093-934X(74)90023-6. [DOI] [Google Scholar]
- [5].Rapport R.L., Tan C.T., Whitaker H.A. Language function and dysfunction among Chinese- and English-speaking polyglots: cortical stimulation, Wada testing, and clinical studies. Brain Lang. 1983;18:342–366. doi: 10.1016/0093-934X(83)90024-X. [DOI] [PubMed] [Google Scholar]
- [6].Trudeau N., Colozzo P., Sylvestre V., Ska B. Language following functional left hemispherectomy in a bilingual teenager. Brain Cogn. 2003;53:384–388. doi: 10.1016/S0278-2626(03)00150-7. [DOI] [PubMed] [Google Scholar]
- [7].Lucas T.H., McKhann G.M., Ojemann G.A. Functional separation of language in the bilingual brain: a comparison of electrical stimulation language mapping in 25 bilingual patients and 117 monolingual control patients. J Neurosurg. 2004;101:449–457. doi: 10.3171/jns.2004.101.3.0449. [DOI] [PubMed] [Google Scholar]
- [8].Roux F.E., Trémoulet M. Organization of language areas in bilingual patients: a cortical stimulation study. J Neurosurg. 2002;97:857–864. doi: 10.3171/jns.2002.97.4.0857. [DOI] [PubMed] [Google Scholar]
- [9].Walker J.A., Quinones-Hinojosa A., Berger M.S. Intraoperative speech mapping in 17 bilingual patients undergoing resection of a mass lesion. Neurosurgery. 2004;54:113–117. doi: 10.1227/01.NEU.0000097270.95721.3B. [DOI] [PubMed] [Google Scholar]
- [10].Price C.J. The anatomy of language: Contributions from functional neuroimaging. J Anat. 2000;197:335–359. doi: 10.1046/j.1469-7580.2000.19730335.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [11].Geschwind N. The organization of language and the brain. Science. 1970;170(961):940–944. doi: 10.1126/science.170.3961.940. [DOI] [PubMed] [Google Scholar]
- [12].Broca P. Perte de la parole, ramolissement chronique et destruction partielle du lobe anteriéur gauche du cerveau. Bull Soc Anthro (Paris) 1861;2:235–238. [Google Scholar]
- [13].Wernicke C. Der Aphasiche symptomencomplex. Breslau: Cohn & Weigert; 1874. [Google Scholar]
- [14].Démonet J.F., Thierry G., Cardebat D. Renewal of the neurophysiology of language: functional neuroimaging. Physiol Rev. 2005;85:49–95. doi: 10.1152/physrev.00049.2003. [DOI] [PubMed] [Google Scholar]
- [15].Turken A.U., Dronkers N.F. The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front Sys Neurosci. 2011;5:1–20. doi: 10.3389/fnsys.2011.00001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [16].Ardilla A. There are two different language systems in the brain. J Behav Brain Sci. 2011;1:23–36. doi: 10.4236/jbbs.2011.12005. [DOI] [Google Scholar]
- [17].Kotz S.A. A critical review of ERP and fMRI evidence on L2 syntactic processing. Brain Lang. 2009;109:68–74. doi: 10.1016/j.bandl.2008.06.002. [DOI] [PubMed] [Google Scholar]
- [18].van Heuven W.J.B., Dijkstra T. Language comprehension in the bilingual brain: fMRI and ERP support for psycholinguistic models. Brain Res Rev. 2010;64:104–122. doi: 10.1016/j.brainresrev.2010.03.002. [DOI] [PubMed] [Google Scholar]
- [19].Klein D., Milner B., Zatorre R.J., Meyer E., Evans A.C. The neural substrates underlying word generation: A bilingual functional-imaging study. Proc Natl Acad Sci U S A. 1995;92:2899–2903. doi: 10.1073/pnas.92.7.2899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [20].Kim K.H.S., Relkin N.R., Lee K.M., Hirsch J. Distinct cortical areas associated with native and second languages. Nature. 1997;388:171–174. doi: 10.1038/40623. [DOI] [PubMed] [Google Scholar]
- [21].Bloch C., Kaiser A., Kuenzli E., Zappatore D., Haller S., Franceschini R., et al. The age of second language acquisition determines the variability in activation elicited by narration in three languages in Broca’s and Wernicke’s area. Neuropsychologia. 2009;47:625–633. doi: 10.1016/j.neuropsychologia.2008.11.009. [DOI] [PubMed] [Google Scholar]
- [22].Abutalebi J., Annoni J.M., Zimine I., Pegna A.J., Seghier M.L., Lee-Jahnke H., et al. Language control and lexical competition in bilinguals: an event-related fMRI study. Cereb Cortex. 2008;18:1496–1505. doi: 10.1093/cercor/bhm182. [DOI] [PubMed] [Google Scholar]
- [23].Indefrey P. A meta-analysis of hemodynamic studies on first and second language processing: which suggested differences can we trust and what do they mean? Lang Learning. 2006;56(Suppl1):279–304. doi: 10.1111/j.1467-9922.2006.00365.x. [DOI] [Google Scholar]
- [24].Abutalebi J., Della Rosa P.A., Tettamanti M., Green D.W., Cappa S.F. Bilingual aphasia and language control: a follow up fMRI and intrinsic connectivity study. Brain Lang. 2009;109:141–156. doi: 10.1016/j.bandl.2009.03.003. [DOI] [PubMed] [Google Scholar]
- [25].Rodriguez-Fornells A., De Diego Balaguer R., Munte T.F. Executive control in bilingual language processing. Lang Learning. 2006;56(suppl1):133–190. doi: 10.1111/j.1467-9922.2006.00359.x. [DOI] [Google Scholar]
- [26].Abutalebi J., Green D.W. Control mechanisms in bilingual language production: neural evidence from language switching studies. Lang Cogn Proc. 2008;23:557–582. doi: 10.1080/01690960801920602. [DOI] [Google Scholar]
- [27].Hernandez A.E. Language switching in the bilingual brain: What’s next? Brain Lang. 2009;109:133–140. doi: 10.1016/j.bandl.2008.12.005. [DOI] [PubMed] [Google Scholar]
- [28].Kroll J.F., Bobb S.C., Misra M., Guo T. Language selection in bilingual speech: evidence for inhibitory processes. Acta Psychol. 2008;128:416–430. doi: 10.1016/j.actpsy.2008.02.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [29].Salmelin R. Clinical neurophysiology of language: The MEG approach. Clin Neurophysiol. 2007;118:237–254. doi: 10.1016/j.clinph.2006.07.316. [DOI] [PubMed] [Google Scholar]
- [30].Schmidt G.W., Roberts T.P.L. Second language research using magnetoencephalography: a review. Second Lang Res. 2009;25:135–166. doi: 10.1177/0267658308098999. [DOI] [Google Scholar]
- [31].Naatanen R., Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology. 1987;24:375–425. doi: 10.1111/j.1469-8986.1987.tb00311.x. [DOI] [PubMed] [Google Scholar]
- [32].Lutkenhoner B., Steinstrater O. High-precision neuromagnetic study of the functional organization of the human auditory cortex. Audiol Neurootol. 1998;3:191–213. doi: 10.1159/000013790. [DOI] [PubMed] [Google Scholar]
- [33].Halgren E., Dhond R.P., Christensen N., Van Petten C., Marinkovic K., Lewine J.D., et al. N400-like magnetoencephalography responses modulated by semantic context, word frequency, and lexical class in sentences. Neuroimage. 2002;17:1101–1106. doi: 10.1006/nimg.2002.1268. [DOI] [PubMed] [Google Scholar]
- [34].Kutas M., Hillyard S.A. Reading senseless sentences: Brain potentials reflect semantic incongruity. Science. 1980;207(4427):203–205. doi: 10.1126/science.7350657. [DOI] [PubMed] [Google Scholar]
- [35].Makela A., Makinen V., Nikkila M., Ilmoniemi R., Tiitinen H. Magnetoencephalographic (MEG) localization of the auditory N400m: effects of stimulus duration. Neuroreport. 2001;21:249–253. doi: 10.1097/00001756-200102120-00014. [DOI] [PubMed] [Google Scholar]
- [36].Simos P.G., Basile L.F.H., Papanicolaou A.C. Source localization of the N400 response in a sentence-reading paradigm using evoked magnetic fields and magnetic source imaging. Brain Res. 1997;762:29–39. doi: 10.1016/S0006-8993(97)00349-1. [DOI] [PubMed] [Google Scholar]
- [37].Naatanen R. Attention and Brain Function. Hillsdale, NJ: Erlbaum; 1992. [Google Scholar]
- [38].Naatanen R., Ilmoniemi R., Alho K. Magnetoencephalography in studies of human cognitive brain function. Trends Neurosci. 1994;17:389–398. doi: 10.1016/0166-2236(94)90048-5. [DOI] [PubMed] [Google Scholar]
- [39].Naatanen R., Lehtokoski A., Lennes M., Cheour M., Huotilainen M., Iivonen A., et al. Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature. 1997;385:423–434. doi: 10.1038/385432a0. [DOI] [PubMed] [Google Scholar]
- [40].Leonard M.K., Brown T.T., Travis K.E., Gharapetian L., Hagler D.J., Jr, Dale A.M., et al. Spatiotemporal dynamics of bilingual word processing. Neuroimage. 2010;49:3286–3294. doi: 10.1016/j.neuroimage.2009.12.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [41].Leonard M.K., Torres C., Travis K.E., Brown T.T., Hagler D.J., Jr, Dale A.M., et al. Language proficiency modulates the recruitment of nonclassical language areas in bilinguals. PLoS One. 2011;6(3):e18240. doi: 10.1371/journal.pone.0018240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [42].Hari R., Parkkonen L., Nangini C. The brain in time: insights from neuromagnetic recordings. Ann N Y Acad Sci. 2010;1191:89–109. doi: 10.1111/j.1749-6632.2010.05438.x. [DOI] [PubMed] [Google Scholar]
- [43].Breier J.I., Papanicolaou A.C. Spatiotemporal patterns of brain activation during an action naming task using magnetoencephalography. J Clin Neurophysiol. 2008;25:7–12. doi: 10.1097/WNP.0b013e318163ccd5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [44].Robinson S.E., Vrba J. Recent Advances in Biomagnetism. Sendai: Tohoku University Press; 1999. Functional neuroimaging by synthetic aperture magnetometry (SAM) [Google Scholar]
- [45].Vrba J., Robinson S.E. Signal processing in magnetoencephalography. Methods (Duluth) 2001;25(2):249–271. doi: 10.1006/meth.2001.1238. [DOI] [PubMed] [Google Scholar]
- [46].Herdman A.T., Pang E.W., Ressel V., Gaetz W., Cheyne D. Task-related modulation of early evoked responses during language production: An event-related synthetic aperture magnetometry study. Cereb Cortex. 2007;17:2536–2543. doi: 10.1093/cercor/bhl159. [DOI] [PubMed] [Google Scholar]
- [47].Ressel V., Wilke M., Lidzba K., Lutzenberger W., Krägeloh-Mann I. Increases in language lateralization in normal children as observed using magnetoencephalography. Brain Lang. 2008;106(3):167–176. doi: 10.1016/j.bandl.2008.01.004. [DOI] [PubMed] [Google Scholar]
- [48].Pang E.W., Wang F., Malone M., Kadis D.S., Donner E.J. Localization of Broca’s area using verb generation tasks in the MEG: Validation against fMRI. Neurosci Lett. 2011;490:215–219. doi: 10.1016/j.neulet.2010.12.055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [49].Kadis D.S., Smith M.L., Mills T., Pang E.W. Expressive language mapping in children using MEG. Downs Syndr Quart. 2008;10:5–12. [Google Scholar]
- [50].Seikihara K., Nagarajan S.S., Poeppel D., Marantz A., Miyahita Y. Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique. IEEE Trans Biomed Eng. 2001;48(7):760–771. doi: 10.1109/10.930901. [DOI] [PubMed] [Google Scholar]
- [51].Van Veen B.D., van Drongelen W., Yuchtman M., Suzuki A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng. 1997;44(9):867–880. doi: 10.1109/10.623056. [DOI] [PubMed] [Google Scholar]
- [52].Mohamed I.S., Cheyne D., Gaetz W.C., Otsubo H., Logan W.J., Snead O.C., III, et al. Spatiotemporal patterns of oscillatory brain activity during auditory word recognition in children: A synthetic aperture magnetometry study. Int J Psychophysiol. 2008;68:141–148. doi: 10.1016/j.ijpsycho.2007.11.005. [DOI] [PubMed] [Google Scholar]
- [53].Isel F., Baumgaertner A., Thrän J., Meisel J.M., Büchel C. Neural circuitry of the bilingual mental lexicon: effect of age of second language acquisition. Brain Cogn. 2010;72:169–180. doi: 10.1016/j.bandc.2009.07.008. [DOI] [PubMed] [Google Scholar]
- [54].Abutalebi J. Neural aspects of second language representation and language control. Acta Psychol. 2008;128:466–478. doi: 10.1016/j.actpsy.2008.03.014. [DOI] [PubMed] [Google Scholar]
- [55].Abutalebi J., Green D. Bilingual language production: the neurocognition of language representation and control. J Neuroling. 2007;20:242–275. doi: 10.1016/j.jneuroling.2006.10.003. [DOI] [Google Scholar]
- [56].Parker Jones O., Green D.W., Grogan A., Pliatsikas C., Filippopolitis K., Ali N., et al. Where, when and why brain activation differs for bilinguals and monolinguals during picture naming and reading aloud. Cereb Cortex. 2012;22(4):892–902. doi: 10.1093/cercor/bhr161. [DOI] [PMC free article] [PubMed] [Google Scholar]
