Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Apr 15;89(8):3380–3384. doi: 10.1073/pnas.89.8.3380

Endogenous oxidative damage of deoxycytidine in DNA.

J R Wagner 1, C C Hu 1, B N Ames 1
PMCID: PMC48871  PMID: 1565630

Abstract

Three major oxidation products of 2'-deoxycytidine (dC)--5-hydroxy-2'-deoxycytidine (oh5dC), 5-hydroxy-2'-deoxyuridine (oh5dU), and 5,6-dihydroxy-5,6-dihydro-2'-deoxyuridine (dUg)--were analyzed from enzymatically hydrolyzed DNA with reversed-phase high-performance liquid chromatography coupled to electrochemical detection. oh5dC and oh5dU can be detected with high sensitivity (50 fmol) and selectivity (0-0.2 V) from hydrolyzed DNA. dUg is not electrochemically active but can be measured by dehydrating it into oh5dU. The quantities of oh5dC, dUg, and oh5dU in untreated commercial-grade calf thymus DNA are 10, 10, and 0.75 fmol/micrograms of DNA, respectively. These levels increased substantially when calf thymus DNA was exposed to ionizing radiation, H2O2 alone, H2O2 and combinations of Fe3+ or Cu2+ and ascorbate, near-UV light (365 nm), near-UV light in the presence of menadione, and OsO4, indicating that oh5dC, oh5dU, and dUg are major oxidative DNA damage products. The steady-state levels of these products were determined from freshly extracted rat tissues and ranged from less than 0.5 fmol/micrograms of DNA for oh5dU to about 10 fmol/micrograms of DNA for oh5dC and dUg in liver and kidney and 22 fmol/micrograms of DNA for oh5dC in brain. The levels of oxo8dG were also determined and in general were somewhat lower than the levels of oh5dC. These findings reinforce the link between DNA damage induced by oxidative metabolism and spontaneous mutagenesis leading to cancer and aging.

Full text

PDF
3380

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman R., Saul R. L., Ames B. N. Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2706–2708. doi: 10.1073/pnas.85.8.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ames B. N. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983 Sep 23;221(4617):1256–1264. doi: 10.1126/science.6351251. [DOI] [PubMed] [Google Scholar]
  3. Aruoma O. I., Halliwell B., Gajewski E., Dizdaroglu M. Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem J. 1991 Feb 1;273(Pt 3):601–604. doi: 10.1042/bj2730601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Basu A. K., Loechler E. L., Leadon S. A., Essigmann J. M. Genetic effects of thymine glycol: site-specific mutagenesis and molecular modeling studies. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7677–7681. doi: 10.1073/pnas.86.20.7677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bertram J. S., Kolonel L. N., Meyskens F. L., Jr Rationale and strategies for chemoprevention of cancer in humans. Cancer Res. 1987 Jun 1;47(11):3012–3031. [PubMed] [Google Scholar]
  6. Boorstein R. J., Teebor G. W. Effects of 5-hydroxymethyluracil and 3-aminobenzamide on the repair and toxicity of 5-hydroxymethyl-2'-deoxyuridine in mammalian cells. Cancer Res. 1989 Mar 15;49(6):1509–1514. [PubMed] [Google Scholar]
  7. Breimer L. H. Ionizing radiation-induced mutagenesis. Br J Cancer. 1988 Jan;57(1):6–18. doi: 10.1038/bjc.1988.2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Breimer L. H., Lindahl T. DNA glycosylase activities for thymine residues damaged by ring saturation, fragmentation, or ring contraction are functions of endonuclease III in Escherichia coli. J Biol Chem. 1984 May 10;259(9):5543–5548. [PubMed] [Google Scholar]
  9. Breimer L. H., Lindahl T. Thymine lesions produced by ionizing radiation in double-stranded DNA. Biochemistry. 1985 Jul 16;24(15):4018–4022. doi: 10.1021/bi00336a032. [DOI] [PubMed] [Google Scholar]
  10. Cadet J., Berger M. Radiation-induced decomposition of the purine bases within DNA and related model compounds. Int J Radiat Biol Relat Stud Phys Chem Med. 1985 Feb;47(2):127–143. doi: 10.1080/09553008514550201. [DOI] [PubMed] [Google Scholar]
  11. Cannon-Carlson S. V., Gokhale H., Teebor G. W. Purification and characterization of 5-hydroxymethyluracil-DNA glycosylase from calf thymus. Its possible role in the maintenance of methylated cytosine residues. J Biol Chem. 1989 Aug 5;264(22):13306–13312. [PubMed] [Google Scholar]
  12. Cannon S. V., Cummings A., Teebor G. W. 5-Hydroxymethylcytosine DNA glycosylase activity in mammalian tissue. Biochem Biophys Res Commun. 1988 Mar 30;151(3):1173–1179. doi: 10.1016/s0006-291x(88)80489-3. [DOI] [PubMed] [Google Scholar]
  13. Cathcart R., Schwiers E., Saul R. L., Ames B. N. Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5633–5637. doi: 10.1073/pnas.81.18.5633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cutler R. G. Antioxidants and aging. Am J Clin Nutr. 1991 Jan;53(1 Suppl):373S–379S. doi: 10.1093/ajcn/53.1.373S. [DOI] [PubMed] [Google Scholar]
  15. Delort A. M., Duplaa A. M., Molko D., Teoule R., Leblanc J. P., Laval J. Excision of uracil residues in DNA: mechanism of action of Escherichia coli and Micrococcus luteus uracil-DNA glycosylases. Nucleic Acids Res. 1985 Jan 25;13(2):319–335. doi: 10.1093/nar/13.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dizdaroglu M. Chemical determination of free radical-induced damage to DNA. Free Radic Biol Med. 1991;10(3-4):225–242. doi: 10.1016/0891-5849(91)90080-m. [DOI] [PubMed] [Google Scholar]
  17. Doetsch P. W., Henner W. D., Cunningham R. P., Toney J. H., Helland D. E. A highly conserved endonuclease activity present in Escherichia coli, bovine, and human cells recognizes oxidative DNA damage at sites of pyrimidines. Mol Cell Biol. 1987 Jan;7(1):26–32. doi: 10.1128/mcb.7.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Eaton M. A., Hutchinson D. W. Poly(5-hydroxycytidylic acid) . Biochim Biophys Acta. 1973 Sep 7;319(3):281–287. doi: 10.1016/0005-2787(73)90167-6. [DOI] [PubMed] [Google Scholar]
  19. Floyd R. A. The role of 8-hydroxyguanine in carcinogenesis. Carcinogenesis. 1990 Sep;11(9):1447–1450. doi: 10.1093/carcin/11.9.1447. [DOI] [PubMed] [Google Scholar]
  20. Fraga C. G., Shigenaga M. K., Park J. W., Degan P., Ames B. N. Oxidative damage to DNA during aging: 8-hydroxy-2'-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4533–4537. doi: 10.1073/pnas.87.12.4533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fuciarelli A. F., Wegher B. J., Blakely W. F., Dizdaroglu M. Yields of radiation-induced base products in DNA: effects of DNA conformation and gassing conditions. Int J Radiat Biol. 1990 Sep;58(3):397–415. doi: 10.1080/09553009014551761. [DOI] [PubMed] [Google Scholar]
  22. Förster W., Bauer E., Schütz H., Berg H., Akimenko M., Minchenkova L. E., Evdokimov YuM, Varshavsky Ia M. Thermodynamics and kinetics of the interaction of copper (II) ions with native DNA. Biopolymers. 1979 Mar;18(3):625–661. doi: 10.1002/bip.1979.360180311. [DOI] [PubMed] [Google Scholar]
  23. Halliwell B., Aruoma O. I. DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett. 1991 Apr 9;281(1-2):9–19. doi: 10.1016/0014-5793(91)80347-6. [DOI] [PubMed] [Google Scholar]
  24. Halliwell B. How to characterize a biological antioxidant. Free Radic Res Commun. 1990;9(1):1–32. doi: 10.3109/10715769009148569. [DOI] [PubMed] [Google Scholar]
  25. Iida S., Hayatsu H. The permanganate oxidation of thymine. Biochim Biophys Acta. 1970 Jul 16;213(1):1–13. doi: 10.1016/0005-2787(70)90002-x. [DOI] [PubMed] [Google Scholar]
  26. John S. W., Weitzner G., Rozen R., Scriver C. R. A rapid procedure for extracting genomic DNA from leukocytes. Nucleic Acids Res. 1991 Jan 25;19(2):408–408. doi: 10.1093/nar/19.2.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kasai H., Crain P. F., Kuchino Y., Nishimura S., Ootsuyama A., Tanooka H. Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis. 1986 Nov;7(11):1849–1851. doi: 10.1093/carcin/7.11.1849. [DOI] [PubMed] [Google Scholar]
  28. Kouchakdjian M., Eisenberg M., Live D., Marinelli E., Grollman A. P., Patel D. J. NMR studies of an exocyclic 1,N2-propanodeoxyguanosine adduct (X) located opposite deoxyadenosine (A) in DNA duplexes at basic pH: simultaneous partial intercalation of X and A between stacked bases. Biochemistry. 1990 May 8;29(18):4456–4465. doi: 10.1021/bi00470a028. [DOI] [PubMed] [Google Scholar]
  29. Leadon S. A. Production of thymine glycols in DNA by radiation and chemical carcinogens as detected by a monoclonal antibody. Br J Cancer Suppl. 1987 Jun;8:113–117. [PMC free article] [PubMed] [Google Scholar]
  30. Loeb L. A., Preston B. D. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet. 1986;20:201–230. doi: 10.1146/annurev.ge.20.120186.001221. [DOI] [PubMed] [Google Scholar]
  31. Maccubbin A., Evans M., Paul C. R., Budzinski E. E., Przybyszewski J., Box H. C. Enzymatic excision of radiation-induced lesions from DNA model compounds. Radiat Res. 1991 Apr;126(1):21–26. [PubMed] [Google Scholar]
  32. Moraes E. C., Keyse S. M., Tyrrell R. M. Mutagenesis by hydrogen peroxide treatment of mammalian cells: a molecular analysis. Carcinogenesis. 1990 Feb;11(2):283–293. doi: 10.1093/carcin/11.2.283. [DOI] [PubMed] [Google Scholar]
  33. Park E. M., Shigenaga M. K., Degan P., Korn T. S., Kitzler J. W., Wehr C. M., Kolachana P., Ames B. N. Assay of excised oxidative DNA lesions: isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3375–3379. doi: 10.1073/pnas.89.8.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Richter C., Park J. W., Ames B. N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6465–6467. doi: 10.1073/pnas.85.17.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Roots R., Henle E., Holley W. R., Chatterjee A. Measurements of nucleic bases released after gamma irradiation of DNA in solution in air. Radiat Res. 1991 Mar;125(3):288–292. [PubMed] [Google Scholar]
  36. Schaaper R. M., Dunn R. L. Spontaneous mutation in the Escherichia coli lacI gene. Genetics. 1991 Oct;129(2):317–326. doi: 10.1093/genetics/129.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shapiro R., Pohl S. H. The reaction of ribonucleosides with nitrous acid. Side products and kinetics. Biochemistry. 1968 Jan;7(1):448–455. doi: 10.1021/bi00841a057. [DOI] [PubMed] [Google Scholar]
  38. Shibutani S., Takeshita M., Grollman A. P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991 Jan 31;349(6308):431–434. doi: 10.1038/349431a0. [DOI] [PubMed] [Google Scholar]
  39. Shigenaga M. K., Gimeno C. J., Ames B. N. Urinary 8-hydroxy-2'-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9697–9701. doi: 10.1073/pnas.86.24.9697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Srinivasan S., Glauert H. P. Formation of 5-hydroxymethyl-2'-deoxyuridine in hepatic DNA of rats treated with gamma-irradiation, diethylnitrosamine, 2-acetylaminofluorene or the peroxisome proliferator ciprofibrate. Carcinogenesis. 1990 Nov;11(11):2021–2024. doi: 10.1093/carcin/11.11.2021. [DOI] [PubMed] [Google Scholar]
  41. Tchou J., Kasai H., Shibutani S., Chung M. H., Laval J., Grollman A. P., Nishimura S. 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4690–4694. doi: 10.1073/pnas.88.11.4690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tkeshelashvili L. K., McBride T., Spence K., Loeb L. A. Mutation spectrum of copper-induced DNA damage. J Biol Chem. 1991 Apr 5;266(10):6401–6406. [PubMed] [Google Scholar]
  43. Wagner J. R., van Lier J. E., Decarroz C., Berger M., Cadet J. Photodynamic methods for oxy radical-induced DNA damage. Methods Enzymol. 1990;186:502–511. doi: 10.1016/0076-6879(90)86144-k. [DOI] [PubMed] [Google Scholar]
  44. Waters L. C., Sikpi M. O., Preston R. J., Mitra S., Jaberaboansari A. Mutations induced by ionizing radiation in a plasmid replicated in human cells. I. Similar, nonrandom distribution of mutations in unirradiated and X-irradiated DNA. Radiat Res. 1991 Aug;127(2):190–201. [PubMed] [Google Scholar]
  45. Weitzman S. A., Weitberg A. B., Clark E. P., Stossel T. P. Phagocytes as carcinogens: malignant transformation produced by human neutrophils. Science. 1985 Mar 8;227(4691):1231–1233. doi: 10.1126/science.3975611. [DOI] [PubMed] [Google Scholar]
  46. Wood M. L., Dizdaroglu M., Gajewski E., Essigmann J. M. Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry. 1990 Jul 31;29(30):7024–7032. doi: 10.1021/bi00482a011. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES