Skip to main content
ISRN Molecular Biology logoLink to ISRN Molecular Biology
. 2012 Oct 15;2012:245706. doi: 10.5402/2012/245706

Nucleosome Positioning

Hiromi Nishida 1,*
PMCID: PMC4890889  PMID: 27335664

Abstract

Nucleosome positioning is not only related to genomic DNA compaction but also to other biological functions. After the chromatin is digested by micrococcal nuclease, nucleosomal (nucleosome-bound) DNA fragments can be sequenced and mapped on the genomic DNA sequence. Due to the development of modern DNA sequencing technology, genome-wide nucleosome mapping has been performed in a wide range of eukaryotic species. Comparative analyses of the nucleosome positions have revealed that the nucleosome is more frequently formed in exonic than intronic regions, and that most of transcription start and translation (or transcription) end sites are located in nucleosome linker DNA regions, indicating that nucleosome positioning influences transcription initiation, transcription termination, and gene splicing. In addition, nucleosomal DNA contains guanine and cytosine (G + C)-rich sequences and a high level of cytosine methylation. Thus, the nucleosome positioning system has been conserved during eukaryotic evolution.

1. Introduction

Eukaryotic genomic DNA is packaged with histone proteins to form chromatin [1, 2]. The most fundamental repeating unit of chromatin is the nucleosome, which consists of an octamer of histones (2 copies of each histone protein: H2A, H2B, H3, and H4) and the genomic DNA wrapped around the octamer [3, 4]. Modification (e.g., acetylation, methylation, and phosphorylation) of the nucleosomal core histones influences chromatin structure and biological functions [57]. The modified nucleosome should be formed at the genomic position or in the genomic region. In this paper, I will focus on nucleosome positioning (not histone modification), because nucleosome positioning is not only related to compacting the genomic DNA but also to gene regulation [817].

Due to the development of DNA sequencing technology and genomic tiling array technology, genome-wide nucleosome mapping has been performed in a wide range of eukaryotic species, including the budding ascomycetous yeast, Saccharomyces cerevisiae [19]; the nematode, Caenorhabditis elegans [20]; the fruit fly, Drosophila melanogaster [21]; humans, Homo sapiens [22]; the malaria parasite, Plasmodium falciparum [23]; the filamentous ascomycete, Aspergillus fumigatus [24]; the fission ascomycetous yeast, Schizosaccharomyces pombe [25]; the plant, Arabidopsis thaliana [26]; several ascomycetous yeasts [27]; the mouse, Mus musculus [28]; the basidiomycete, Mixia osmundae [29]; the amoebozoa, Dictyostelium discoideum [30].

2. Nucleosome Positioning and DNA Sequence Preference

The DNA sequence plays an important role in nucleosome positioning [3137]. Genome-wide analyses of nucleosome positioning have revealed that DNA sequence preference exists for nucleosome occupancy [29, 38, 39]. The nucleosome occupancy reflects average nucleosome positioning levels on a given region of DNA in a population of cells [4043]. For example, the dinucleotide sequences AA and TT are depleted in nucleosome-forming regions in different organisms [29, 39, 44], whereas the G + C content is highly correlated with nucleosome occupancy [45, 46]. In addition, it has been reported that nucleosomal DNA cytosines are more highly methylated than nucleosome linker DNA cytosines in humans and the plant Arabidopsis [26]. These results suggest that DNA sequence preference in nucleosome occupancy has been conserved during eukaryotic evolution.

Genome-wide nucleosome positioning data suggest that nucleosome occupancy restricts the range of genomic G + C content. Bacteria and Archaea, which lack nucleosomes, have a wide range of G + C content. In contrast, the genomic G + C content distribution of Eukarya is completely different from that of Bacteria and Archaea (Figure 1). This distribution difference may be related to the differences in the conservation level of histones and nucleoid-associated proteins; although histone proteins are highly conserved between different organisms, nucleoid-associated proteins vary among Bacteria and Archaea [4750].

Figure 1.

Figure 1

Distribution of the genomic G + C content of Bacteria, Archaea, and Eukarya. The G + C content data were obtained from the Genome Composition Database [18].

3. Nucleosome Positioning around the Transcription Start Site

Nucleosome depletion in the vicinity of the transcription start site (TSS) has been indicated [5153]. Indeed, nucleosome-free regions are pervasive in the gene promoters of yeast [26, 54, 55]. Moreover, the nucleosome organization around TSSs is very similar among different organisms [20, 29, 30, 39, 54, 55]. The nucleosome position profile is sharper in the downstream region of the TSS. Nucleosomes downstream from the nucleosome-free region are well positioned, with positioning decaying with increasing distance into the protein-coding region. Nucleosome positioning is more conserved in gene promoters than in gene bodies, suggesting that nucleosome positioning in the gene promoter plays an important role in gene transcription [19, 27, 52, 56, 57].

On the other hand, nucleosome positioning in vivo differs from that in vitro, indicating that systems other than DNA sequence preference are involved in nucleosome positioning [40, 41, 58]. Recently, it was reported that the most conserved nucleosome position (the +1 nucleosome), which is the sharpest in the nucleosome position profile, is maintained by ATP-dependent factors in S. cerevisiae [59, 60]. It remains uncertain whether nucleosome positioning in the gene promoter has been evolutionarily conserved as a major driving force in gene expression [15, 27, 36] or not [57, 61, 62].

4. Nucleosome Positioning around the Translation (or Transcription) End Site

Genome-wide nucleosome mapping analyses of the ascomycete S. cerevisiae revealed that nucleosome depletion is also found around translation end sites as well as TSSs [63, 64]. In the basidiomycete M. osmundae, dinucleosome—but not mononucleosome—depletion is clearly found around TSSs and translation end sites [29]. These results suggest that the nucleosome linker DNA length of M. osmundae around TSSs and translation end sites is shorter than that of S. cerevisiae. Nucleosome depletion around transcription end sites is also found in Drosophila and Dictyostelium [21, 30]. The regions around both transcription start and end sites have DNA sequences rich in adenine and thymine, which disfavor core histones [21, 30, 54]. Recently, some chromatin remodelers have been reported to locate around transcription start and end sites in S. cerevisiae [65].

5. Nucleosome Positioning in Exonic and Intronic Regions

Chromatin structure may be linked to gene splicing [66, 67]. Genome-wide nucleosome mapping analyses have shown that the nucleosome occupancy level in exons is higher than that in introns [6872]. DNA sequence differences between exons and introns are correlated with nucleosomal DNA preferences [73], as exon DNA sequences have a higher G + C content than intron DNA sequences [70]. As described above, nucleosomal DNA prefers (G + C)-rich sequences.

6. Conclusions

Although the nucleosome positioning system differs between the ascomycetous budding yeast S. cerevisiae and the ascomycetous fission yeast Sch. pombe [25], genome-wide comparative analyses of nucleosome positions have revealed that nucleosome positioning shares a common feature among different organisms. Nucleosomal DNA has a higher G + C content and a higher level of cytosine methylation than nucleosome linker DNA (Figure 2). In addition, nucleosome positioning is found more frequently in exonic than in intronic regions. Transcription start sites and translation (or transcription) end sites are more frequently located in nucleosome linker DNA than in nucleosomal DNA. Thus, not only the structures of core histone proteins but also the nucleosome positioning systems have been greatly conserved during eukaryotic evolution.

Figure 2.

Figure 2

Difference between nucleosome-forming and linker regions.

References

  • 1.Kornberg R. D. Structure of chromatin. Annual Review of Biochemistry. 1977;46:931–954. doi: 10.1146/annurev.bi.46.070177.004435. [DOI] [PubMed] [Google Scholar]
  • 2.Igo-Kemenes T., Hörz W., Zachau H. G. Chromatin. Annual Review of Biochemistry. 1982;51:89–121. doi: 10.1146/annurev.bi.51.070182.000513. [DOI] [PubMed] [Google Scholar]
  • 3.Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 1997;389(6648):251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
  • 4.Richmond T. J., Davey C. A. The structure of DNA in the nucleosome core. Nature. 2003;423(6936):145–150. doi: 10.1038/nature01595. [DOI] [PubMed] [Google Scholar]
  • 5.Strahl B. D., Allis C. D. The language of covalent histone modifications. Nature. 2000;403(6765):41–45. doi: 10.1038/47412. [DOI] [PubMed] [Google Scholar]
  • 6.Jenuwein T., Allis C. D. Translating the histone code. Science. 2001;293(5532):1074–1080. doi: 10.1126/science.1063127. [DOI] [PubMed] [Google Scholar]
  • 7.Rice J. C., Allis C. D. Histone methylation versus histone acetylation: new insights into epigenetic regulation. Current Opinion in Cell Biology. 2001;13(3):263–273. doi: 10.1016/S0955-0674(00)00208-8. [DOI] [PubMed] [Google Scholar]
  • 8.Han M., Grunstein M. Nucleosome loss activates yeast downstream promoters in vivo . Cell. 1988;55(6):1137–1145. doi: 10.1016/0092-8674(88)90258-9. [DOI] [PubMed] [Google Scholar]
  • 9.Grunstein M. Histone function in transcription. Annual Review of Cell Biology. 1990;6:643–678. doi: 10.1146/annurev.cb.06.110190.003235. [DOI] [PubMed] [Google Scholar]
  • 10.Lu Q., Wallrath L. L., Elgin S. C. R. Nucleosome positioning and gene regulation. Journal of Cellular Biochemistry. 1994;55(1):83–92. doi: 10.1002/jcb.240550110. [DOI] [PubMed] [Google Scholar]
  • 11.Gregory P. D., Hörz W. Life with nucleosomes: chromatin remodelling in gene regulation. Current Opinion in Cell Biology. 1998;10(3):339–345. doi: 10.1016/S0955-0674(98)80009-4. [DOI] [PubMed] [Google Scholar]
  • 12.Wyrick J. J., Holstege F. C. P., Jennings E. G., et al. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature. 1999;402(6760):418–421. doi: 10.1038/46567. [DOI] [PubMed] [Google Scholar]
  • 13.Rando O. J., Ahmad K. Rules and regulation in the primary structure of chromatin. Current Opinion in Cell Biology. 2007;19(3):250–256. doi: 10.1016/j.ceb.2007.04.006. [DOI] [PubMed] [Google Scholar]
  • 14.Tirosh I., Barkai N. Two strategies for gene regulation by promoter nucleosomes. Genome Research. 2008;18(7):1084–1091. doi: 10.1101/gr.076059.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Field Y., Fondufe-Mittendorf Y., Moore I. K., et al. Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization. Nature Genetics. 2009;41(4):438–445. doi: 10.1038/ng.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Jiang C., Pugh B. F. Nucleosome positioning and gene regulation: advances through genomics. Nature Reviews Genetics. 2009;10(3):161–172. doi: 10.1038/nrg2522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Bai L., Morozov A. V. Gene regulation by nucleosome positioning. Trends in Genetics. 2010;26(11):476–483. doi: 10.1016/j.tig.2010.08.003. [DOI] [PubMed] [Google Scholar]
  • 18.Kryukov K., Sumiyama K., Ikeo K., Gojobori T., Saitou N. A new database (GCD) on genome composition for eukaryote and prokaryote genome sequences and their initial analyses. Genome Biology and Evolution. 2012;4(4):501–512. doi: 10.1093/gbe/evs026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Yuan G.-C., Liu Y.-J., Dion M. F., et al. Molecular biology: genome-scale identification of nucleosome positions in S. cerevisiae . Science. 2005;309(5734):626–630. doi: 10.1126/science.1112178. [DOI] [PubMed] [Google Scholar]
  • 20.Valouev A., Ichikawa J., Tonthat T., et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Research. 2008;18(7):1051–1063. doi: 10.1101/gr.076463.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Mavrich T. N., Jiang C., Ioshikhes I. P., et al. Nucleosome organization in the Drosophila genome. Nature. 2008;453(7193):358–362. doi: 10.1038/nature06929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Schones D. E., Cui K., Cuddapah S., et al. Dynamic regulation of nucleosome positioning in the human genome. Cell. 2008;132(5):887–898. doi: 10.1016/j.cell.2008.02.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Westenberger S. J., Cui L., Dharia N., Winzeler E., Cui L. Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes. BMC Genomics. 2009;10, article 610 doi: 10.1186/1471-2164-10-610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Nishida H., Motoyama T., Yamamoto S., Aburatani H., Osada H. Genome-wide maps of mono- and di-nucleosomes of Aspergillus fumigatus . Bioinformatics. 2009;25(18):2295–2297. doi: 10.1093/bioinformatics/btp413. [DOI] [PubMed] [Google Scholar]
  • 25.Lantermann A. B., Straub T., Strålfors A., Yuan G.-C., Ekwall K., Korber P. Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae . Nature Structural and Molecular Biology. 2010;17(2):251–257. doi: 10.1038/nsmb.1741. [DOI] [PubMed] [Google Scholar]
  • 26.Chodavarapu R. K., Feng S., Bernatavichute Y. V., et al. Relationship between nucleosome positioning and DNA methylation. Nature. 2010;466(7304):388–392. doi: 10.1038/nature09147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Tsankov A. M., Thompson D. A., Socha A., Regev A., Rando O. J. The role of nucleosome positioning in the evolution of gene regulation. PLoS Biology. 2010;8(7) doi: 10.1371/journal.pbio.1000414.e1000414 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Li Z., Schug J., Tuteja G., White P., Kaestner K. H. The nucleosome map of the mammalian liver. Nature Structural and Molecular Biology. 2011;18(6):742–746. doi: 10.1038/nsmb.2060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Nishida H., Kondo S., Matsumoto T., et al. Characteristics of nucleosomes and linker DNA regions on the genome of the basidiomycete Mixia osmundae revealed by mono- and dinucleosome mapping. Open Biology. 2012;2 doi: 10.1098/rsob.120043.120043 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Chang G. S., Noegel A. A., Mavrich T. N., et al. Unusual combinatorial involvement of poly-A/T tracts in organizing genes and chromatin in Dictyostelium . Genome Research. 2012;22(6):1098–1106. doi: 10.1101/gr.131649.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Drew H. R., Travers A. A. DNA bending and its relation to nucleosome positioning. Journal of Molecular Biology. 1985;186(4):773–790. doi: 10.1016/0022-2836(85)90396-1. [DOI] [PubMed] [Google Scholar]
  • 32.Satchwell S. C., Drew H. R., Travers A. A. Sequence periodicities in chicken nucleosome core DNA. Journal of Molecular Biology. 1986;191(4):659–675. doi: 10.1016/0022-2836(86)90452-3. [DOI] [PubMed] [Google Scholar]
  • 33.Lowary P. T., Widom J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. Journal of Molecular Biology. 1998;276(1):19–42. doi: 10.1006/jmbi.1997.1494. [DOI] [PubMed] [Google Scholar]
  • 34.Segal E., Fondufe-Mittendorf Y., Chen L., et al. A genomic code for nucleosome positioning. Nature. 2006;442(7104):772–778. doi: 10.1038/nature04979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Peckham H. E., Thurman R. E., Fu Y., et al. Nucleosome positioning signals in genomic DNA. Genome Research. 2007;17(8):1170–1177. doi: 10.1101/gr.6101007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Kaplan N., Hughes T. R., Lieb J. D., Widom J., Segal E. Contribution of histone sequence preferences to nucleosome organization: proposed definitions and methodology. Genome Biology. 2010;11(11, article 140) doi: 10.1186/gb-2010-11-11-140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Ioshikhes I., Hosid S., Pugh B. F. Variety of genomic DNA patterns for nucleosome positioning. Genome Research. 2011;21(11):1863–11871. doi: 10.1101/gr.116228.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Tsankov A., Yanagisawa Y., Rhind N., Regev A., Rando O. J. Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization. Genome Research. 2011;21(11):1851–1862. doi: 10.1101/gr.122267.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Valouev A., Johnson S. M., Boyd S. D., Smith C. L., Fire A. Z., Sidow A. Determinants of nucleosome organization in primary human cells. Nature. 2011;474(7352):516–520. doi: 10.1038/nature10002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Stein A., Takasuka T. E., Collings C. K. Are nucleosome positions in vivo primarily determined by histone-DNA sequence preferences? Nucleic Acids Research. 2010;38(3):709–719. doi: 10.1093/nar/gkp1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Zhang Y., Moqtaderi Z., Rattner B. P., et al. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo . Nature Structural and Molecular Biology. 2009;16(8):847–852. doi: 10.1038/nsmb.1636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Kaplan N., Moore I., Fondufe-Mittendorf Y., et al. Nucleosome sequence preferences influence in vivo nucleosome organization. Nature Structural and Molecular Biology. 2010;17(8):918–920. doi: 10.1038/nsmb0810-918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Pugh B. F. A preoccupied position on nucleosomes. Nature Structural and Molecular Biology. 2010;17(8):p. 923. doi: 10.1038/nsmb0810-923. [DOI] [PubMed] [Google Scholar]
  • 44.Johnson S. M., Tan F. J., McCullough H. L., Riordan D. P., Fire A. Z. Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin. Genome Research. 2006;16(12):1505–1516. doi: 10.1101/gr.5560806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Lee W., Tillo D., Bray N., et al. A high-resolution atlas of nucleosome occupancy in yeast. Nature Genetics. 2007;39(10):1235–1244. doi: 10.1038/ng2117. [DOI] [PubMed] [Google Scholar]
  • 46.Tillo D., Hughes T. R. G+C content dominates intrinsic nucleosome occupancy. BMC Bioinformatics. 2009;10, article 442 doi: 10.1186/1471-2105-10-442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Rimsky S., Travers A. Pervasive regulation of nucleoid structure and function by nucleoid-associated proteins. Current Opinion in Microbiology. 2011;14(2):136–141. doi: 10.1016/j.mib.2011.01.003. [DOI] [PubMed] [Google Scholar]
  • 48.Takeda T., Yun C.-S., Shintani M., Yamane H., Nojiri H. Distribution of genes encoding nucleoid-associated protein homologs in plasmids. International Journal of Evolutionary Biology. 2011;2011 doi: 10.4061/2011/685015.685015 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Ali S. S., Xia B., Liu J., Nararre W. W. Silencing of foreign DNA in bacteria. Current Opinion in Microbiology. 2012;15(2):175–181. doi: 10.1016/j.mib.2011.12.014. [DOI] [PubMed] [Google Scholar]
  • 50.Nishida H. Genome DNA sequence variation, evolution, and function in bacteria and archaea. Current Issues in Molecular Biology. 2013;15(1):19–24. [PubMed] [Google Scholar]
  • 51.Bernstein B. E., Liu C. L., Humphrey E. L., Perlstein E. O., Schreiber S. L. Global nucleosome occupancy in yeast. Genome Biology. 2004;5(9) doi: 10.1186/gb-2004-5-9-r62.R62 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Lee C.-K., Shibata Y., Rao B., Strahl B. D., Lieb J. D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nature Genetics. 2004;36(8):900–905. doi: 10.1038/ng1400. [DOI] [PubMed] [Google Scholar]
  • 53.Nishida H., Suzuki T., Kondo S., Miura H., Fujimura Y. I., Hayashizaki Y. Histone H3 acetylated at lysine 9 in promoter is associated with low nucleosome density in the vicinity of transcription start site in human cell. Chromosome Research. 2006;14(2):203–211. doi: 10.1007/s10577-006-1036-7. [DOI] [PubMed] [Google Scholar]
  • 54.Mavrich T. N., Ioshikhes I. P., Venters B. J., et al. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Research. 2008;18(7):1073–1083. doi: 10.1101/gr.078261.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Shivaswamy S., Bhinge A., Zhao Y., Jones S., Hirst M., Iyer V. R. Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biology. 2008;6(3) doi: 10.1371/journal.pbio.0060065.e65 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Nishida H., Motoyama T., Suzuki Y., Yamamoto S., Aburatani H., Osada H. Genome-wide maps of mononucleosomes and dinucleosomes containing hyperacetylated histones of Aspergillus fumigatus . PloS ONE. 2010;5(3) doi: 10.1371/journal.pone.0009916.e9916 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Nishida H. Conservation of nucleosome positions in duplicated and orthologous gene pairs. The Scientific World Journal. 2012;2012 doi: 10.1100/2012/298174.298174 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Hughes A., Rando O. J. Chromatin “programming” by sequence-is there more to the nucleosome code than %GC? Journal of Biology. 2009;8(11, article 96) doi: 10.1186/jbiol207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Gkikopoulos T., Schofield P., Singh V., et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science. 2011;333(6050):1758–1760. doi: 10.1126/science.1206097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Zhang Z., Wippo C. J., Wal M., Ward E., Korber P., Pugh B. F. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science. 2011;332(6032):977–980. doi: 10.1126/science.1200508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Tirosh I., Sigal N., Barkai N. Divergence of nucleosome positioning between two closely related yeast species: genetic basis and functional consequences. Molecular Systems Biology. 2010;6, article 365 doi: 10.1038/msb.2010.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Tsui K., Dubuis S., Gebbia M., et al. Evolution of nucleosome occupancy: conservation of global properties and divergence of gene-specific patterns. Molecular and Cellular Biology. 2011;31(21):4348–4355. doi: 10.1128/MCB.05276-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Field Y., Kaplan N., Fondufe-Mittendorf Y., et al. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Computational Biology. 2008;4(11) doi: 10.1371/journal.pcbi.1000216.e1000216 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Kaplan N., Moore I. K., Fondufe-Mittendorf Y., et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature. 2009;458(7236):362–366. doi: 10.1038/nature07667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Yen K., Vinayachandran V., Batta K., Koerber R. T., Pugh B. F. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell. 2012;149(7):1461–1473. doi: 10.1016/j.cell.2012.04.036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Beckmann J. S., Trifonov E. N. Splice junctions follow a 205-base ladder. Proceedings of the National Academy of Sciences of the United States of America. 1991;88(6):2380–2383. doi: 10.1073/pnas.88.6.2380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Baldi P., Brunak S., Chauvin Y., Krogh A. Naturally occurring nucleosome positioning signals in human exons and introns. Journal of Molecular Biology. 1996;263(4):503–510. doi: 10.1006/jmbi.1996.0592. [DOI] [PubMed] [Google Scholar]
  • 68.Andersson R., Enroth S., Rada-Iglesias A., Wadelius C., Komorowski J. Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Research. 2009;19(10):1732–1741. doi: 10.1101/gr.092353.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Schwartz S., Meshorer E., Ast G. Chromatin organization marks exon-intron structure. Nature Structural and Molecular Biology. 2009;16(9):990–995. doi: 10.1038/nsmb.1659. [DOI] [PubMed] [Google Scholar]
  • 70.Tilgner H., Nikolaou C., Althammer S., et al. Nucleosome positioning as a determinant of exon recognition. Nature Structural and Molecular Biology. 2009;16(9):996–1001. doi: 10.1038/nsmb.1658. [DOI] [PubMed] [Google Scholar]
  • 71.Chen W., Luo L., Zhang L. The organization of nucleosomes around splice sites. Nucleic Acids Research. 2010;38(9):2788–2798. doi: 10.1093/nar/gkq007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Schwartz S., Ast G. Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing. EMBO Journal. 2010;29(10):1629–1636. doi: 10.1038/emboj.2010.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Kogan S., Trifonov E. N. Gene splice sites correlate with nucleosome positions. Gene. 2005;352(1-2):57–62. doi: 10.1016/j.gene.2005.03.004. [DOI] [PubMed] [Google Scholar]

Articles from ISRN Molecular Biology are provided here courtesy of Wiley

RESOURCES