Skip to main content
. Author manuscript; available in PMC: 2017 Jun 1.
Published in final edited form as: Genomics. 2016 Apr 30;107(6):223–230. doi: 10.1016/j.ygeno.2016.04.005

Table 2.

Prediction performance of different combinations of clinical and omics measurements: mean (sd) of C-statistic.

Model Enet SPCA SPLS
Cln 0.708 (0.077) 0.610 (0.076) 0.714 (0.023)
Cln+Mu 0.707 (0.078) 0.612 (0.072) 0.710 (0.021)
Gen 0.575 (0.071) 0.662 (0.063) 0.665 (0.022)
Met 0.605 (0.068) 0.668 (0.067) 0.702 (0.021)
CAN 0.501 (0.069) 0.570 (0.071) 0.586 (0.026)
Cln+Mu+Gen 0.705 (0.076) 0.661 (0.072) 0.713 (0.022)
Cln+Mu+Met 0.724 (0.071) 0.707 (0.060) 0.743 (0.020)
Cln+Mu+CNA 0.691 (0.083) 0.626 (0.069) 0.722 (0.023)
Cln+Mu+Gen+Met 0.717 (0.070) 0.714 (0.059) 0.746 (0.021)
Cln+Mu+Gen+CNA 0.686 (0.076) 0.660 (0.073) 0.714 (0.022)
Cln+Mu+Met+CNA 0.713 (0.073) 0.718 (0.061) 0.743 (0.020)
Cln+Mu+Gen+Meth+CNA 0.706 (0.072) 0.707 (0.059) 0.746 (0.021)

Cln: clinical variables; Mu: mutation; Gen: mRNA gene expression; Met: methylation; CNA: copy number alternation. A larger value of C-statistic indicates better prediction. A value of 0.5 corresponds to a model with no predictive power.