Skip to main content
Springer logoLink to Springer
. 2014 Feb 22;35(4):359–368. doi: 10.1007/s11669-014-0288-8

The Enthalpies of Mixing of Liquid Ni-Sn-Zn Alloys

Yu Plevachuk 1, A Yakymovych 2,, S Fürtauer 2, H Ipser 2, H Flandorfer 2
PMCID: PMC4894259  PMID: 27335535

Abstract

The partial and integral enthalpies of mixing of liquid ternary Ni-Sn-Zn alloys were determined. The system was investigated along two sections x Ni/x Sn ≈ 1:9, x Ni/x Sn ≈ 1:6 at 1073 K and along two sections x Sn/x Zn ≈ 9:1, x Sn/x Zn ≈ 4:1 at 873 K. The integral enthalpy of mixing at each temperature is described using the Redlich-Kister-Muggianu model for substitutional ternary solutions. In addition, the experimental results were compared with data calculated according to the Toop extrapolation model. The minimum integral enthalpy of approx. −20000 J mol-1 corresponds to the minimum in the constituent binary Ni-Sn system, the maximum of approx. 3000 J mol-1 is equal to the maximum in the binary Sn-Zn system.

Keywords: calorimetry, enthalpy of mixing, metallic alloys, ternary

Introduction

Low temperature soldering is one of the key technologies for the production of electronics devices. Recently, several types of new lead-free Sn-based solders have attracted the attention of the electronics industry.[1-4] Eutectic or near eutectic Sn-Zn alloys, which have been recognized as possible solder candidates due to their low melting temperatures and low costs, are among them.

The melting point of the eutectic Sn85.1Zn14.9 solder is 472 K, which is close to that of the conventional Sn-Pb eutectic alloy (456 K) but lower than those of other Sn-based eutectic alloys that are already used in soldering, i.e. Sn-Cu (500 K), Sn-Ag (494 K) or Sn-Ag-Cu (490 K). While the Sn-Zn eutectic alloy has excellent properties as a low temperature solder, it has also some drawbacks. Damage by heat exposure and corrosion in humidity, inferior wettability, easy oxidation and micro-void formation have been encountered to limit the practical use of this solder.[5]

It is known that the poor oxidation resistance of the Sn-Zn eutectic alloy is due to zinc oxidation which occurs both in the primary crystallization of (Zn) and the eutectic phase. If the amount of the (Zn) phase in the Sn-Zn eutectic alloy can be reduced or fixed by formation of intermetallic compounds, it is expected that the oxidation resistance can be improved.[6] Therefore, much research was focused on the addition of alloying elements, such as Cu, Ni, Ag, Sb, or Bi,. Among them, Ni has been considered as a suitable alloying element in lead-free solders due to the formation of stable Ni-Zn binary phases as well as by improving the wettability.[7] Furthermore, the addition of Ni effectively enhances the formation of additional ternary intermetallic compounds which can improve the mechanical properties.[8]

The development of lead-free solders requires a clear and thorough understanding of their structural and thermodynamic properties. The increasing influence of computational modelling in all technological processes generates an increased demand for accurate thermodynamic information for the materials systems involved, which are used as fundamental inputs for any model. The solidification process of a liquid alloy has a profound impact on the structure and properties of the solid material. Therefore, knowledge of the basic properties of the molten alloys prior to solidification becomes very important for the development of materials with predetermined characteristics.

In this work the enthalpy of mixing of Sn-based liquid Ni-Sn-Zn alloys was investigated at 873 and 1073 K. The data obtained are useful for modelling of interatomic interactions of the components as well as for a thermodynamic assessment of the Ni-Sn-Zn system. The experimental data were fitted on the basis of an extended Redlich-Kister-Muggianu model[9] and compared to data calculated according to the Toop extrapolation model.[10]

Literature Survey

The Sn-Zn Binary System

Thermodynamic properties of liquid Sn-Zn alloys have been investigated repeatedly.[11-20] The authors used different methods to determine the enthalpy of mixing: calorimetric investigations were carried out in Ref 11-15, the authors of Ref 16-19 used the emf method, and quantitative thermal analysis was used in Ref 20. An endothermic behavior of ΔMix H has been revealed over the whole concentration region with a maximum point at about 65 at.% Zn; only Kleppa reported a temperature dependence of the integral enthalpy of mixing.[11] A critical review of the experimental enthalpy of mixing data was published by Lee.[21]

The Ni-Sn Binary System

The enthalpy of mixing of liquid Ni-Sn alloys was investigated experimentally in Ref 22-24. According to Haddad et al.,[22] the enthalpy of mixing does not depend on temperature between 867 and 1579 K while such a dependence was reported in the temperature range 1660-1775 K by Lück et al.[23]

A strong temperature dependence of the limiting partial enthalpy of mixing for Ni in Sn was observed by Flandorfer et al.[24] The authors concluded also a certain temperature dependence of the integral enthalpy of mixing in the liquid state near the liquidus curve. Several thermodynamic assessments including phase diagram calculations, based on experimental data, were carried out in the past.[25-27]

The Ni-Zn Binary System

Experimental data on the thermodynamic properties of liquid Ni-Zn alloys are scarce in the literature[28,29]; all investigations point to an exothermic mixing behavior. The minimum point, shifted to the Zn-reach side from the equiatomic concentration, can be explained by the existence of short-range order in the liquid corresponding to the rather stable γ-phase in the solid state. All thermodynamic optimizations were based on the same experimental data.[30-33]

The Ni-Sn-Zn Ternary System

No calorimetric data for liquid Ni-Sn-Zn alloys have been reported up to now. However, Gandova et al.[36] attempted an extrapolation from binary thermodynamic data to obtain Gibbs energy values for ternary liquid alloys, using different geometrical models as well as the CALculation of PHAse Diagrams (CALPHAD) method. Various groups of authors reported partial ternary phase diagrams, especially isothermal sections at different temperatures.[34,35,37,41,42]

Experimental Procedure

A Calvet-type microcalorimeter HTMC-1000 (Setaram, Lyon, France), equipped with an automatic drop device for up to 30 drops, was used for the enthalpy of mixing measurements.[38] Control and data evaluation was done with Lab View and HiQ. All measurements were performed under Ar flow (approx. 30 cm3/min) in graphite crucibles. The microcalorimeter was calibrated at the end of each measurement series by five additions (approx. 40 mg each) of standard α-Al2O3 supplied by the National Institute of Standards and Technology (NIST, Gaithersburg, MD, USA). The interval between individual drops was 40 min, the acquisition interval of the heat flow was about 0.5 s. Two thermopiles with more than 200 thermocouples of Pt/Pt-10Rh were used for the determination of the sample temperature (T M) in the furnace and of the corresponding heat effect for each drop. The measured enthalpy ∆H Signal (integrated heat flow at constant pressure) is given by

ΔHSignal=ni(Hm,i,TM-Hm,i,TD)+ΔHReaction, 1

where n i is the number of moles of the added sample, H m denotes molar enthalpies, and T D is the drop temperature (room temperature). The molar enthalpy difference (Hm,i,TM-Hm,i,TD) was calculated using the SGTE data for pure elements.[39] Because of the rather small masses added, the partial enthalpies can be given directly as

ΔHi¯=ΔHReactionni, 2

The integral enthalpy of mixing was calculated by summarizing the respective reaction enthalpies and dividing by the total molar amount of substance. The respective binary starting value for each section in the ternary system was calculated from the binary literature data[24,32,40] using the interaction parameters listed in Table 3.

Table 3.

Binary and ternary interaction parameters for Ni-Sn-Zn

System Interaction parameters, J mol-1 Reference
Ni-Sn

0L = −80659 + 183*T

1L = −24617 − 953*T

[24]
Ni-Zn

0L = −50722

1L = 8436

2L = −25136

[32]
Sn-Zn

0L = 12728

1L = −5074

[40]
Ni-Sn-Zn

0M = −156468

1M = 26414

2M = −64909

Present work

Temperatures (T) in kelvin

The enthalpy of mixing for ternary liquid Ni-Sn-Zn alloys was determined along two sections at 873 K where pure Ni was dropped into liquid Sn1−xZnx alloys (x = 0.09 and 0.18) as well as along two section at 1073 K where pieces of pure Zn were dropped into liquid NixSn1−x alloys (x = 0.10 and 0.15) (Fig. 1). A lower temperature of 873 K was chosen for sections C and D to avoid excessive Zn losses by evaporation. For sections A and B a higher temperature of 1073 K was chosen in order to cover a larger liquid range.

Fig. 1.

Fig. 1

Investigated sections and alloy compositions in the ternary Ni-Sn-Zn system (A and B at 1073 K; C and D at 873 K)

Random errors as well as systematic errors of calorimetry depend on different factors, such as construction of the calorimeter, calibration procedure, signal integration or “chemical errors”, e.g. incomplete reactions or impurities. Considering many calibration measurements done by dropping NIST standard sapphire, the standard deviation can be estimated to be less than ±1%. The systematic errors are mainly caused by parasitic heat flows, base line problems at signal integration and dropping and mixing problems. One can estimate that the random error of the measured enthalpy is about ±150 J.

All experimental details, i.e. starting amounts, added amounts and resulting heat effects as well as the obtained enthalpy of mixing values are collected in Tables 1 and 2. Figure 2, 3, 4, and 5 show the changes of ∆Mix H versus concentration.

Table 1.

Partial and integral enthalpies of mixing of Ni-Sn-Zn alloys, 1073 K; standard states: pure liquid metals

Dropped mole Drop enthalpy Partial enthalpy Integral enthalpy(a)
n i, 10−3 mol ΔH Signal, J mol-1 x i(b) ΔHi¯, J mol-1 x Zn x Sn ΔMixH, J mol-1
Sect. A: x Ni/x Sn ≈ 1:9; i = Zn; starting amounts: n Ni = 1.8795 × 10−3 mol; n Sn = 16.9010 × 10−3 mol
0 0 0 0.8999 −4575
0.4742 35463 0.0123 5404 0.0246 0.8778 −4329
0.9874 35289 0.0373 5230 0.0499 0.8550 −4081
1.5146 34981 0.0623 4922 0.0746 0.8328 −3847
2.0829 34621 0.0872 4562 0.0998 0.8101 −3618
2.6552 34988 0.1119 4929 0.1239 0.7884 −3390
3.2758 35026 0.1362 4967 0.1485 0.7663 −3155
3.9210 34624 0.1606 4564 0.1727 0.7445 −2935
4.6136 35104 0.1850 5044 0.1972 0.7224 −2699
5.3408 34808 0.2093 4749 0.2214 0.7007 −2474
6.1164 34346 0.2335 4287 0.2457 0.6788 −2264
6.9339 34532 0.2577 4472 0.2697 0.6573 −2050
7.7665 34110 0.2811 4050 0.2926 0.6366 −1858
8.6252 34158 0.3036 4099 0.3147 0.6167 −1672
9.5212 34142 0.3256 4083 0.3364 0.5972 −1490
10.4328 33950 0.3468 3891 0.3571 0.5785 −1322
11.3799 33774 0.3672 3715 0.3773 0.5604 −1163
12.3639 33972 0.3871 3913 0.3970 0.5427 −1003
13.3635 33675 0.4064 3616 0.4157 0.5258 −859
14.4186 33334 0.4250 3275 0.4343 0.5091 −728
15.4831 33464 0.4431 3405 0.4519 0.4933 −600
16.5723 33105 0.4603 3046 0.4688 0.4781 −487
17.7193 33126 0.4771 3067 0.4855 0.4630 −376
18.8975 32838 0.4935 2778 0.5016 0.4486 −277
20.0849 32818 0.5092 2758 0.5168 0.4349 −184
i = Zn; starting amounts: n Ni = 2.8002 × 10−3 mol; n Sn = 25.3021 × 10−3 mol
0 0 0 0.9004 −4554
0.3509 35704 0.0062 5594 0.0123 0.8893 −4429
0.7141 35519 0.0186 5409 0.0248 0.8780 −4305
1.0846 35353 0.0310 5243 0.0372 0.8669 −4184
1.4534 34920 0.0432 4810 0.0492 0.8561 −4072
1.8465 35332 0.0554 5222 0.0617 0.8448 −3950
2.2588 34949 0.0680 4839 0.0744 0.8334 −3830
2.6943 35035 0.0809 4925 0.0875 0.8216 −3707
3.1405 35024 0.0940 4914 0.1005 0.8099 −3583
3.6093 34852 0.1072 4742 0.1138 0.7979 −3460
4.0840 34598 0.1204 4488 0.1269 0.7861 −3343
4.5754 34674 0.1335 4564 0.1400 0.7743 −3224
5.0883 34661 0.1467 4551 0.1533 0.7623 −3104
5.6137 34619 0.1599 4509 0.1665 0.7504 −2985
6.1585 34270 0.1731 4160 0.1798 0.7385 −2872
6.7115 33926 0.1863 3816 0.1928 0.7268 −2766
7.2719 34086 0.1992 3975 0.2056 0.7153 −2659
7.8535 34013 0.2120 3902 0.2184 0.7037 −2553
8.4508 34308 0.2248 4198 0.2312 0.6922 −2442
9.0626 33941 0.2375 3830 0.2438 0.6808 −2339
9.6893 33928 0.2501 3818 0.2564 0.6695 −2237
10.3270 33878 0.2626 3768 0.2687 0.6584 −2137
10.9854 33795 0.2749 3685 0.2810 0.6473 −2039
11.6546 33573 0.2871 3463 0.2931 0.6364 −1947
12.3527 33833 0.2992 3722 0.3053 0.6254 −1849
13.0640 33652 0.3113 3541 0.3173 0.6146 −1756
Sect. B: x Ni/x Sn ≈ 1:6; i = Zn; starting amounts: n Ni = 2.9697 × 10−3 mol; n Sn = 16.6085 × 10−3 mol
0 0 0 0.8483 −6998
0.4638 32640 0.0116 2549 0.0231 0.8287 −6777
0.9475 32614 0.0347 2523 0.0462 0.8092 −6558
1.4621 32814 0.0578 2723 0.0695 0.7894 −6331
2.0017 33008 0.0811 2917 0.0928 0.7696 −6100
2.5943 33133 0.1049 3042 0.1170 0.7491 −5855
3.2188 33097 0.1291 3006 0.1412 0.7285 −5613
3.8634 33414 0.1530 3324 0.1648 0.7085 −5367
4.5377 33395 0.1765 3305 0.1882 0.6887 −5124
5.2394 33541 0.1996 3451 0.2111 0.6692 −4882
5.9692 33080 0.2224 2989 0.2337 0.6501 −4657
6.7383 33327 0.2449 3236 0.2560 0.6311 −4427
7.5331 33075 0.2670 2984 0.2779 0.6126 −4209
8.3589 33090 0.2885 2999 0.2992 0.5945 −3996
10.1075 32834 0.3198 2743 0.3405 0.5595 −3599
11.0247 32574 0.3504 2483 0.3602 0.5427 −3417
11.9850 32599 0.3700 2508 0.3797 0.5262 −3237
12.9748 32487 0.3891 2396 0.3986 0.5102 −3065
13.9881 32414 0.4077 2324 0.4167 0.4948 −2903
15.0290 32383 0.4255 2292 0.4343 0.4799 −2746
16.0976 32258 0.4427 2167 0.4512 0.4655 −2599
17.2098 32304 0.4595 2213 0.4678 0.4515 −2454
18.3485 32392 0.4758 2301 0.4838 0.4379 −2311
19.5236 32303 0.4915 2212 0.4993 0.4248 −2175
20.7209 31894 0.5067 1804 0.5142 0.4121 −2057
i = Zn; starting amounts: n Co = 4.4554 × 10−3 mol; n Sn = 25.2700 × 10−3 mol
0 0 0 0.8501 −6915
0.3400 32405 0.0057 2295 0.0113 0.8405 −6811
0.6997 32339 0.0172 2229 0.0230 0.8306 −6704
1.0643 32660 0.0288 2550 0.0346 0.8207 −6594
1.4415 32532 0.0404 2422 0.0463 0.8108 −6485
1.8368 32941 0.0522 2831 0.0582 0.8006 −6369
2.2541 32630 0.0643 2520 0.0705 0.7902 −6253
2.6894 32691 0.0767 2581 0.0830 0.7796 −6134
3.1366 33042 0.0892 2932 0.0954 0.7690 −6011
3.6035 32536 0.1018 2426 0.1081 0.7582 −5892
4.0867 33028 0.1145 2917 0.1209 0.7474 −5766
4.5768 32822 0.1271 2712 0.1334 0.7367 −5645
5.0817 32940 0.1397 2830 0.1460 0.7260 −5522
5.5951 33040 0.1522 2930 0.1584 0.7154 −5400
6.1267 33001 0.1646 2891 0.1709 0.7048 −5277
6.6752 32885 0.1771 2774 0.1834 0.6942 −5155
7.2416 33179 0.1896 3069 0.1959 0.6836 −5029
7.8181 33411 0.2021 3301 0.2082 0.6731 −4901
8.4095 33511 0.2144 3400 0.2205 0.6626 −4773
9.0243 33002 0.2267 2892 0.2329 0.6521 −4651
9.6558 32646 0.2390 2535 0.2452 0.6417 −4536
10.2992 32773 0.2513 2663 0.2573 0.6314 −4420
10.9507 32564 0.2633 2454 0.2692 0.6212 −4310
11.6234 32194 0.2752 2084 0.2811 0.6111 −4206
12.3258 32702 0.2871 2592 0.2931 0.6009 −4092
13.0394 32600.8 0.2990 2491 0.3049 0.5909 −3983

(a) Per mole of mixture

(b) Average value before and after the drop

Table 2.

Partial and integral enthalpies of mixing of Ni-Sn-Zn alloys, 873 K; standard states: pure liquid metals

Dropped mole Drop enthalpy Partial enthalpy Integral enthalpy(a)
n i, 10−3 mol ΔH Signal, J mol-1 x i(b) ΔHi¯, J mol-1 x Ni x Sn ΔMixH, J mol-1
Sect. C: x Sn/x Zn ≈ 9:1; i = Ni; starting amounts: n Sn = 25.2346 × 10−3 mol; n Zn = 2.4245 × 10−3 mol
0 0 0 0.9123 683
0.4284 −25748 0.0076 −59962 0.0153 0.8984 −242
0.8846 −24490 0.0231 −58704 0.0310 0.8841 −1176
1.3535 −13999 0.0388 −48212 0.0467 0.8698 −1936
1.8391 −3034 0.0545 −37248 0.0623 0.8555 −2518
2.3383 7587 0.0701 −26627 0.0780 0.8412 −2919
2.8598 17025 0.0858 −17189 0.0937 0.8269 −3163
3.3915 16214 0.1015 −17999 0.1092 0.8127 −3417
3.9359 16471 0.1169 −17743 0.1246 0.7987 −3664
4.5032 16490 0.1323 −17724 0.1400 0.7846 −3912
5.0829 16553 0.1476 −17661 0.1552 0.7707 −4155
5.6891 16228 0.1629 −17986 0.1706 0.7567 −4406
6.3094 16304 0.1782 −17910 0.1857 0.7429 −4653
6.9459 15838 0.1932 −18376 0.2007 0.7292 −4905
7.5905 15898 0.2080 −18316 0.2153 0.7159 −5151
8.2575 16153 0.2226 −18061 0.2299 0.7026 −5390
8.9571 16554 0.2373 −17660 0.2446 0.6892 −5625
9.6625 16479 0.2518 −17735 0.2589 0.6761 −5854
10.3824 16205 0.2659 −18009 0.2729 0.6633 −6084
11.1205 16058 0.2798 −18155 0.2868 0.6507 −6314
11.8841 16487 0.2936 −17727 0.3005 0.6382 −6534
12.6560 16050 0.3072 −18164 0.3139 0.6259 −6757
13.4374 16223 0.3204 −17991 0.3270 0.6140 −6970
14.2431 16414 0.3334 −17800 0.3399 0.6022 −7178
15.0654 16369 0.3463 −17844 0.3526 0.5906 −7384
15.9136 16363 0.3589 −17851 0.3652 0.5791 −7587
i = Ni; starting amounts: n Sn = 25.2818 × 10−3 mol; n Zn = 2.4438 × 10−3 mol
0 0 0 0.9119 687
0.4330 −25481 0.0077 −59751 0.0154 0.8978 −242
0.8784 −24916 0.0230 −59186 0.0307 0.8839 −1160
1.8115 −14379 0.0460 −48649 0.0613 0.8559 −2660
2.3156 −2355 0.0692 −36625 0.0771 0.8416 −3230
2.8352 4419 0.0849 −29851 0.0928 0.8273 −3683
3.3701 15772 0.1006 −18497 0.1084 0.8130 −3938
3.9239 10040 0.1162 −24229 0.1240 0.7988 −4293
5.0895 15527 0.1395 −18742 0.1551 0.7704 −4806
5.6884 15422 0.1627 −18848 0.1702 0.7566 −5058
6.2987 16705 0.1777 −17564 0.1851 0.7431 −5282
6.9339 16576 0.1926 −17694 0.2001 0.7294 −5509
7.5933 16046 0.2075 −18223 0.2150 0.7158 −5747
8.2679 17026 0.2223 −17244 0.2297 0.7024 −5962
8.9444 16662 0.2368 −17607 0.2439 0.6894 −6177
9.6405 16232 0.2510 −18037 0.2580 0.6766 −6398
10.3527 16463 0.2649 −17806 0.2719 0.6639 −6611
11.0981 16721 0.2789 −17548 0.2859 0.6512 −6821
11.8519 16640 0.2927 −17630 0.2995 0.6388 −7027
12.6078 16581 0.3060 −17689 0.3126 0.6268 −7227
13.3807 16234 0.3191 −18036 0.3255 0.6150 −7430
14.1806 16382 0.3320 −17887 0.3384 0.6033 −7630
15.0078 16453 0.3448 −17817 0.3512 0.5916 −7827
15.8386 16186 0.3574 −18083 0.3636 0.5803 −8023
Sect. D: x Sn/x Zn ≈ 4:1; i = Ni; starting amounts: n Sn = 25.2954 × 10−3 mol; n Zn = 5.5993 × 10−3 mol
0 0 0 0.8188 1409
0.4356 −27712 0.0070 −61936 0.0139 0.8074 528
0.8942 −27644 0.0210 −61867 0.0281 0.7957 −372
2.3401 −1591 0.0493 −35814 0.0704 0.7611 −1914
2.8627 14270 0.0776 −19953 0.0848 0.7493 −2193
3.3958 17296 0.0919 −16928 0.0990 0.7377 −2422
3.9385 16899 0.1060 −17325 0.1131 0.7262 −2655
4.5007 14899 0.1201 −19325 0.1272 0.7147 −2919
5.0752 17149 0.1341 −17074 0.1411 0.7032 −3145
5.6794 16141 0.1482 −18083 0.1553 0.6916 −3392
6.2922 16243 0.1622 −17980 0.1692 0.6802 −3633
6.9180 16587 0.1761 −17636 0.1830 0.6690 −3864
7.5767 16342 0.1899 −17881 0.1969 0.6575 −4104
8.2482 15991 0.2038 −18232 0.2107 0.6462 −4347
8.9409 16355 0.2176 −17869 0.2244 0.6350 −4582
9.6419 16651 0.2312 −17572 0.2379 0.6240 −4806
10.3848 16676 0.2447 −17547 0.2516 0.6128 −5036
11.1370 16680 0.2583 −17543 0.2650 0.6018 −5260
11.9000 16546 0.2715 −17678 0.2781 0.5911 −5481
12.6854 16366 0.2846 −17857 0.2911 0.5804 −5704
13.4884 16751 0.2975 −17472 0.3039 0.5699 −5917
14.3170 16507 0.3103 −17716 0.3167 0.5595 −6133
15.1782 16826 0.3231 −17397 0.3294 0.5490 −6344
i = Ni; starting amounts: n Sn = 25.2995 × 10−3 mol; n Zn = 5.5168 × 10−3 mol
0 0 0 0.8210 1392
0.4360 −29183 0.0070 −63435 0.0140 0.8095 488
0.8924 −28183 0.0210 −62434 0.0281 0.7979 −418
1.3610 −27581 0.0352 −61833 0.0423 0.7863 −1312
1.8353 −15096 0.0493 −49347 0.0562 0.7748 −2010
2.3273 −10944 0.0632 −45196 0.0702 0.7633 −2651
2.8471 14858 0.0774 −19394 0.0846 0.7515 −2910
3.3788 16836 0.0917 −17416 0.0988 0.7399 −3135
3.9352 16461 0.1060 −17790 0.1132 0.7280 −3370
4.5002 16638 0.1203 −17614 0.1274 0.7164 −3598
5.0793 16517 0.1345 −17734 0.1415 0.7048 −3826
5.6901 15904 0.1487 −18347 0.1559 0.6930 −4069
6.3075 16388 0.1629 −17864 0.1699 0.6815 −4298
6.9417 16140 0.1769 −18112 0.1838 0.6700 −4530
7.5937 16510 0.1908 −17741 0.1977 0.6587 −4755
8.2566 16364 0.2045 −17888 0.2113 0.6475 −4977
8.9334 15615 0.2180 −18637 0.2247 0.6365 −5210
9.6490 16360 0.2316 −17892 0.2385 0.6252 −5434
10.3765 16451 0.2452 −17801 0.2519 0.6142 −5653
11.1069 17586 0.2584 −16666 0.2649 0.6035 −5845
11.8574 16722 0.2714 −17530 0.2779 0.5929 −6050
12.6251 17009 0.2842 −17242 0.2906 0.5824 −6248
13.4052 16959 0.2969 −17293 0.3031 0.5721 −6443
14.1947 16430 0.3092 −17822 0.3154 0.5621 −6642
15.0158 16178 0.3215 −18073 0.3276 0.5520 −6847
15.8574 16070 0.3337 −18182 0.3398 0.5421 −7051

(a) Per mole of mixture

(b) Average value before and after the drop

Fig. 2.

Fig. 2

Integral molar enthalpies of mixing of liquid Ni-Sn-Zn alloys along the section x Ni/x Sn ≈ 1:9 at 1073 K; reference states: pure liquid metals

Fig. 3.

Fig. 3

Integral molar enthalpies of mixing of liquid Ni-Sn-Zn alloys along the section x Ni/x Sn ≈ 1:6 at 1073 K; reference states: pure liquid metals

Fig. 4.

Fig. 4

Integral molar enthalpies of mixing of liquid Ni-Sn-Zn alloys along the section x Sn/x Zn ≈ 9:1 at 873 K; reference states: pure liquid metals

Fig. 5.

Fig. 5

Integral molar enthalpies of mixing of liquid Ni-Sn-Zn alloys along the section x Sn/x Zn ≈ 4:1 at 873 K; reference states: pure liquid metals

Results and Discussion

Experimental Results

According to the phase equilibria at 1073 K,[35] the experimental temperature for (Ni-Sn) + Zn alloys along the sections A (x Ni/x Sn ≈ 1:9) and B (x Ni/x Sn ≈ 1:6) was high enough to obtain completely liquid alloys over the entire investigated concentration range; see dashed-points line in Fig. 1. In contrary, the clear kinks in the enthalpy curves for (Sn-Zn) + Ni alloys along the cross sections C (x Sn/x Zn = 9:1) and D (x Sn/x Zn ≈ 4:1) shown in Fig. 4 and 5 indicate formation of a solid phase and denote the liquidus limit at 873 K. The corresponding points are in reasonable agreement with the estimated liquidus line at 873 K given by Yuan et al.[37] which is shown as a dashed line in Fig. 1. Accordingly, the values within the italicized values in Table 2 are for alloys beyond the liquidus limit.

The obtained enthalpies of mixing are exothermic along all sections, indicating the preferred interactions between unlike kinds of atoms. It should be noted that the enthalpy of mixing data for both (Sn-Zn) + Ni alloys are practically identical in the concentration range after formation of a solid phase. This may be explained by formation of the same phase in both cases.

Ternary Modeling

The interaction parameters of the binary systems were taken directly from the literature[24,32,40] and are listed in Table 3. The enthalpy of mixing for the ternary system was treated by a least-squares fit using the following Redlich-Kister-Muggianu polynomial,[9] which takes into account additional ternary interactions:

ΔMixH=ij>ixixjννLi:jxi-xjν+xixjxk0Mi:j:kxi+1Mi:j:kxj+2Mi:j:kxk, 3

where i, j, k are equal to 1, 2, 3 for the elements Ni, Sn and Zn respectively; ν L i:j (ν = 0, 1, 2,…) are the interaction parameters of the three binary systems; ν M i:j:k (ν = 0, 1, 2) are three ternary interaction parameters; x i, x j, x k are the corresponding mole fractions. The enthalpy of mixing is temperature independent for the two binary systems Ni-Zn and Sn-Zn, and it shows small temperature dependence for the Ni-Sn system. Therefore, any possible temperature dependence of ΔMix H in the ternary Ni-Sn-Zn system was neglected in the present evaluation. The parameters ν M i:j:k, obtained from the experimental enthalpy of mixing data, represent the additional contribution due to ternary interactions (Table 3). The difference between experimental and calculated enthalpy of mixing data is not more than ±250 J mol-1 which is within the limits of the experimental errors. This can be seen from Fig. 2, 3, 4, and 5 where full lines refer to calculated values with ternary interaction, dashed lines to those without.

As an alternative, the so-called Toop model[10] was used to calculate the ternary enthalpy values. This model uses an asymmetric extrapolation to predict ternary thermodynamic quantities based on binary data. The corresponding equation is:

ΔMixH=xj1-xiΔMixHi,jxi,1-xi+xk1-xiΔMixHi,kxi,1-xi+xj+xk2ΔMixHj,kxjxj+xk,xkxj+xk, 4

where ∆Mix H i,j, ∆Mix H i,k, and ∆Mix H j,k, are the enthalpies of mixing for liquid Ni-Sn, Ni-Zn and Sn-Zn alloys, respectively. The enthalpies of mixing values of binary sub-systems were calculated by a Redlich-Kister polynomial based on interaction parameters from the literature given in Table 3.

A comparison of the experimental enthalpy of mixing with the calculated data along all investigated cross sections is shown in Fig. 2, 3, 4, and 5. It can be seen that the calculated curves based on the Toop model are in good agreement with our fitting without ternary interaction terms and differ from the experimental data by less than 400 J mol-1 except for the section x Ni/x Sn ≈ 1:9 where the deviation is higher. This comparatively small improvement of the fits adding ternary interaction terms, however, is not a proof for the existence of real ternary interaction in the liquid phase. Both, the Muggianu- and the Toop-model for the extrapolation of binary enthalpy data into the ternary are of limiting significance. Thus the ternary terms could also compensate shortcomings of the binary extrapolations models

Finally, an iso-enthalpy plot is presented in Fig. 6. The values are exothermic in most of the ternary composition range, except close to the binary Sn-Zn system. The minimum values are actually in the binary Ni-Sn system. All data beyond the liquidus limit are considered as enthalpy of mixing of the metastable liquid.

Fig. 6.

Fig. 6

Isoenthalpy curves of liquid Ni-Sn-Zn alloys valid for the temperature range 873-1073 K; reference states: pure liquid metals, numbers given in J mol-1

Conclusions

Enthalpies of mixing in the liquid Ni-Sn-Zn system were measured along four sections using a high temperature Calvet microcalorimeter. For two sections x Ni/x Sn ≈ 1:9, x Ni/x Sn ≈ 1:6 were measured at 1073 K, for the other two sections, i.e. x Sn/x Zn ≈ 9:1, x Sn/x Zn ≈ 4:1, experiments were performed at 873 K. A comparison of experimental and calculated enthalpy of mixing values based on Redlich-Kister-Muggianu data fits and on the Toop extrapolation model shows good agreement.

Based on the experimental data three ternary interaction parameters ν M i:j:k were obtained according to the Redlich-Kister-Muggianu polynomial. These data could be used in a standard CALPHAD procedure for the assessment of the equilibrium phase diagram.

Acknowledgments

This work was performed in the framework of the European Concerted Research Action COST MP0602 project “Advanced Solder Materials for High Temperature Application”. Financial support by the Austrian Science Fund (FWF) under Project No. P21507 is gratefully acknowledged. Yu.P. was supported through a Short Term Scientific Mission within COST MP0602. A.Ya. was supported by a Lise Meitner Fellowship of the Austrian Science Fund (FWF, Project No. M1324).

References

  • 1.Puttlitz KJ, Stalter KA. Handbook of Lead-Free Solder Technology for Microelectronic Assemblies. New York: Marcel Dekker Inc.; 2004. [Google Scholar]
  • 2.Kim KS, Yang JM, Yu CH, Jung IO, Kim HH. Analysis on Interfacial Reactions Between Sn-Zn Solders and the Au/Ni Electrolytic-Plated Cu Pad. J. Alloys Compd. 2004;379:314–318. doi: 10.1016/j.jallcom.2004.03.138. [DOI] [Google Scholar]
  • 3.Shohji I, Nakamura T, Mori F, Fujiuchi S. Interface Reaction and Mechanical Properties of Lead-free Sn-Zn Alloy/Cu Joints. Mater. Trans. 2002;43:1797–1801. doi: 10.2320/matertrans.43.1797. [DOI] [Google Scholar]
  • 4.Suganuma K, Kim KS. Sn-Zn Low Temperature Solder. J. Mater. Sci. Mater. Electron. 2007;18:121–127. doi: 10.1007/s10854-006-9018-2. [DOI] [Google Scholar]
  • 5.Wei XQ, Huang HZ, Zhou L, Zhang M, Liu XD. On the Advantages of Using a Hypoeutectic Sn-Zn as Lead-Free Solder Material. Mater. Lett. 2007;61:655–658. doi: 10.1016/j.matlet.2006.05.029. [DOI] [Google Scholar]
  • 6.Jiang JX, Lee JE, Kim KS, Suganuma K. Oxidation Behavior of Sn-Zn Solders Under High-Temperature and High-Humidity Conditions. J. Alloys Compd. 2008;462:244–251. doi: 10.1016/j.jallcom.2007.08.007. [DOI] [Google Scholar]
  • 7.Zhu WJ, Liu HS, Wang JS, Ma G, Jin ZP. Interfacial Reactions Between Sn-Zn Alloys and Ni Substrates. J. Electron. Mater. 2010;39:209–214. doi: 10.1007/s11664-009-0950-9. [DOI] [Google Scholar]
  • 8.Gain AK, Chan YC, Yung WKC. Effect of Nano Ni Additions on the Structure and Properties of Sn-9Zn and Sn-Zn-3Bi Solders in Au/Ni/Cu Ball Grid Array Packages. Mater. Sci. Eng. B. 2009;162:92–98. doi: 10.1016/j.mseb.2009.03.010. [DOI] [Google Scholar]
  • 9.Muggianu YM, Gambino M, Bros JP. Enthalpies of Formation of Liquid Alloys Bismuth-Gallium-Tin at 723 K—Choice of an Analytical Representation of Integral and Partial Thermodynamic Functions of Mixing for This Ternary-System. J. Chim. Phys. 1975;72:83–88. [Google Scholar]
  • 10.Toop GW. Predicting Ternary Activities Using Binary Data. Trans. Met. Soc. AIME. 1965;233:850–855. [Google Scholar]
  • 11.Kleppa OJ. A Thermodynamic Study of Liquid Metallic Solutions. 6. Calorimetric Investigations of the Systems Bismuth-Lead, Cadmium-Lead, Cadmium-Tin and Tin-Zinc. J. Phys. Chem. 1955;59:354–361. doi: 10.1021/j150526a018. [DOI] [Google Scholar]
  • 12.Oelsen W. Zur Kalorimetrie Und Thermodynamik Der Zinn-Zink-Legierungen. Z. Metallkd. 1957;48:1–8. [Google Scholar]
  • 13.Schürmann E, Träger H. Die Empfindlichkeit und die Wiederholbarkeit von Messungen mit dem Kleinkalorimeter (The Sensitivity and Reproducibility of Measurements with Microcalorimeter) Arch. Eisenhüttenwes. 1961;32:397–408. [Google Scholar]
  • 14.Moser Z, K. Rzyman RS. Calorimetric Studies on Zn-Sn Liquid Solutions. Bull. Pol. Acad. Sci. Tech. Sci. 1987;35:461–464. [Google Scholar]
  • 15.Genot M, Hagege R. Etude Thermodynamique Du Systeme Etainzinc. Compt. Rend. Hebd. Acad. Sci. 1960;251:2901–2903. [Google Scholar]
  • 16.Ptak W. Thermodynamics of Liquid Zinc-Tin Solutions. Archiwum Hutnictwa. 1960;5:649–650. [Google Scholar]
  • 17.Sano K, Okajima K, Tatsuo S. A Thermodynamic Study of the Liquid Ternary System Zinc-Cadmium and Zinc-Tin. III. The System Zinc-Cadmium-Tin. Mem. Fac. Eng. Nagoya Univ. 1953;5:299–305. [Google Scholar]
  • 18.Fiorani M, Valenti V. Ricerche Termodinamiche su Sistemi Metallici - Nota III. Sistema Liquido Zonco-Stango. Gazz. Chim. Ital. 1955;85:607–615. [Google Scholar]
  • 19.Scheil E, Muller ED. Dampfdruckmessungen an Flussigen Zink-Zinn-Legierungen. Z. Metallkd. 1962;53:389–395. [Google Scholar]
  • 20.Itagaki K, Yazawa A. Measurements of Thermo-Dynamic Quantities for Tin-Zinc and Indium-Antimony Alloys by Quantitative Thermal Analysis. J. Jpn. Inst. Met. 1975;39:880–887. [Google Scholar]
  • 21.Lee BJ. Thermodynamic Assessments of the Sn-Zn and In-Zn Binary Systems. CALPHAD. 1996;20:471–480. doi: 10.1016/S0364-5916(97)00009-6. [DOI] [Google Scholar]
  • 22.Haddad R, Gaune-Escard M, Bros JP, Ranninger-Havlicek A, Hayer E, Komarek KL. Thermodynamics of Nickel-Tin Liquid Alloys. J. Alloys Compd. 1997;247:82–92. doi: 10.1016/S0925-8388(96)02594-7. [DOI] [Google Scholar]
  • 23.Luck R, Tomiska J, Predel B. Calorimetric Determination of the Enthalpy of Mixing of Liquid Nickel-Tin Alloys as a Function of Temperature. Z. Metallkd. 1988;79:345–349. [Google Scholar]
  • 24.Flandorfer H, Luef C, Saeed U. On the Temperature Dependence of the Enthalpies of Mixing in Liquid Binary (Ag, Cu, Ni)-Sn Alloys. J. Non-Cryst. Solids. 2008;354:2953–2972. doi: 10.1016/j.jnoncrysol.2007.12.009. [DOI] [Google Scholar]
  • 25.Nash P, Choo H, Schwarz RB. Thermodynamic Calculation of Phase Equilibria in the Ti-Co and Ni-Sn Systems. J. Mater. Sci. 1998;33:4929–4936. doi: 10.1023/A:1004478101233. [DOI] [Google Scholar]
  • 26.Ghosh G. Thermodynamic Modeling of the Nickel-Lead-Tin System. Metall. Mater. Trans. A. 1999;30:1481–1494. doi: 10.1007/s11661-999-0085-x. [DOI] [Google Scholar]
  • 27.Liu HS, Wang J, Jin ZP. Thermodynamic Optimization of the Ni-Sn Binary System. CALPHAD. 2004;28:363–370. doi: 10.1016/j.calphad.2004.12.002. [DOI] [Google Scholar]
  • 28.Hagiwara H, Sugino S, Yamaguchi K. Activity of Zinc in Liquid Nickel-Zinc Alloys. Bull. Univ. Osaka Prefect. Ser. A. 1977;26:81–86. [Google Scholar]
  • 29.Chart TG, Critchle JK, Williams R. Thermodynamic Data for Nickel-Zinc Alloys. J. Inst. Met. 1968;96:224. [Google Scholar]
  • 30.Vassilev GP, Gomez-Acebo T, Tedenac JC. Thermodynamic Optimization of the Ni-Zn System. J. Phase Equilib. 2000;21:287–301. doi: 10.1361/105497100770340075. [DOI] [Google Scholar]
  • 31.Su XP, Tang NY, Toguri JM. Thermodynamic Assessment of the Ni-Zn System. J. Phase Equilib. 2002;23:140–148. doi: 10.1361/1054971023604125. [DOI] [Google Scholar]
  • 32.Miettinen J. Thermodynamic Description of the Cu-Ni-Zn System Above 600 C. CALPHAD. 2003;27:263–274. doi: 10.1016/j.calphad.2003.09.002. [DOI] [Google Scholar]
  • 33.P. Franke and D. Neuschuetz, Ni-Zn (Nickel-Zinc) Binary System, in Part 5: Binary Systems Supplement 1. Landolt-Boernstein - Group IV Physical Chemistry, 2007, p 1-4
  • 34.Chang J, Seo SK, Lee HM. Phase Equilibria in the Sn-Ni-Zn Ternary System: Isothermal Sections at 200°C, 500°C, and 800°C. J. Electron. Mater. 2010;39:2643–2652. doi: 10.1007/s11664-010-1313-2. [DOI] [Google Scholar]
  • 35.Schmetterer C, Rajamohan D, Ipser H, Flandorfer H. The High-Temperature Phase Equilibria of the Ni-Sn-Zn System: Isothermal Sections. Intermetallics. 2011;19:1489–1501. doi: 10.1016/j.intermet.2011.05.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Gandova V, Romanowska J, Vassilev G. Comparison Between Sn-Ni-Zn Liquid Phase Thermodynamic Assessments Performed by the CALPHAD Method and by Geometrical Models. RMZ M. & G. 2010;57:441–452. [Google Scholar]
  • 37.Yuan Y, Delsante S, Li DJ, Borzone G. The Isothermal Section of the Ni-Sn-Zn Phase Diagram at 873 K. Intermetallics. 2011;19:1646–1650. doi: 10.1016/j.intermet.2011.06.012. [DOI] [Google Scholar]
  • 38.Flandorfer H, Gehringer F, Hayer E. Individual Solutions for Control and Data Acquisition with the PC. Thermochim. Acta. 2002;382:77–87. doi: 10.1016/S0040-6031(01)00739-0. [DOI] [Google Scholar]
  • 39.Dinsdale AT. SGTE Data for Pure Elements. CALPHAD. 1991;15:317–425. doi: 10.1016/0364-5916(91)90030-N. [DOI] [Google Scholar]
  • 40.Rechchach M, Sabbar A, Flandorfer H, Ipser H. Enthalpies of Mixing of Liquid In-Sn and In-Sn-Zn Alloys. Thermochim. Acta. 2010;502:66–72. doi: 10.1016/j.tca.2010.02.008. [DOI] [Google Scholar]
  • 41.Gandova V, Soares D, Lilova K, Tedenac J-C, Vassilev GP. Phase Equilibria in the Sn-Zn-Ni System. Int. J. Mater. Res. 2011;102:257–268. doi: 10.3139/146.110481. [DOI] [Google Scholar]
  • 42.Gandova VD, Broz P, Buršík J, Vassilev GP. Thermochemical and Phase Diagram Studies of the Sn-Zn-Ni System. Thermochim. Acta. 2011;524:47–55. doi: 10.1016/j.tca.2011.06.013. [DOI] [Google Scholar]

Articles from Journal of Phase Equilibria and Diffusion are provided here courtesy of Springer

RESOURCES