Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1993 Sep;56(9):1013–1015. doi: 10.1136/jnnp.56.9.1013

Reduced cerebral cortical but elevated striatal concentration of somatostatin-like immunoreactivity in dominantly inherited olivopontocerebellar atrophy.

S J Kish 1, Y Robitaille 1, M el-Awar 1, L Schut 1, L DiStefano 1, M J Ball 1, M F Mazurek 1
PMCID: PMC489740  PMID: 8105030

Abstract

Somatostatin-like immunoreactivity (SLI) was measured in the brains of nine patients with dominantly inherited olivopontocerebellar atrophy (OPCA), who all had a marked deficit of the cholinergic marker choline-acetyltransferase (ChAT) in the cerebral cortex and striatum. Mean concentrations of SLI in OPCA were significantly reduced by 42-58% in parietal and occipital cortices and frontal cortical eye fields, but were normal in other cortical areas, including two subdivisions of the temporal cortex which show marked depletions of both SLI and ChAT in Alzheimer's disease. This dissociation of SLI and ChAT indicates that a cortical cholinergic deficit does not invariably lead to reduction of somatostatin. In the caudate nucleus, the region of OPCA brain having the most severe ChAT deficit (-81%), SLI levels were significantly elevated by 46% and were negatively and significantly correlated with ChAT activities (r = -0.66). The SLI alterations could be due to abnormal somatostatin metabolism or release, or an increased number of somatostatin-containing neurons and could contribute to the brain dysfunction of OPCA.

Full text

PDF
1013

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong D. M., LeRoy S., Shields D., Terry R. D. Somatostatin-like immunoreactivity within neuritic plaques. Brain Res. 1985 Jul 8;338(1):71–79. doi: 10.1016/0006-8993(85)90249-5. [DOI] [PubMed] [Google Scholar]
  2. Beal M. F., Mazurek M. F., Chattha G. K., Svendsen C. N., Bird E. D., Martin J. B. Neuropeptide Y immunoreactivity is reduced in cerebral cortex in Alzheimer's disease. Ann Neurol. 1986 Sep;20(3):282–288. doi: 10.1002/ana.410200303. [DOI] [PubMed] [Google Scholar]
  3. Beal M. F., Mazurek M. F., Ellison D. W., Swartz K. J., McGarvey U., Bird E. D., Martin J. B. Somatostatin and neuropeptide Y concentrations in pathologically graded cases of Huntington's disease. Ann Neurol. 1988 Jun;23(6):562–569. doi: 10.1002/ana.410230606. [DOI] [PubMed] [Google Scholar]
  4. Beal M. F., Mazurek M. F., McKee M. A. The regional distribution of somatostatin and neuropeptide Y in control and Alzheimer's disease striatum. Neurosci Lett. 1987 Aug 18;79(1-2):201–206. doi: 10.1016/0304-3940(87)90697-5. [DOI] [PubMed] [Google Scholar]
  5. Beal M. F., Mazurek M. F., Svendsen C. N., Bird E. D., Martin J. B. Widespread reduction of somatostatin-like immunoreactivity in the cerebral cortex in Alzheimer's disease. Ann Neurol. 1986 Oct;20(4):489–495. doi: 10.1002/ana.410200408. [DOI] [PubMed] [Google Scholar]
  6. Beal M. F., Uhl G., Mazurek M. F., Kowall N., Martin J. B. Somatostatin: alterations in the central nervous system in neurological diseases. Res Publ Assoc Res Nerv Ment Dis. 1986;64:215–257. [PubMed] [Google Scholar]
  7. Chesselet M. F., Reisine T. D. Somatostatin regulates dopamine release in rat striatal slices and cat caudate nuclei. J Neurosci. 1983 Jan;3(1):232–236. doi: 10.1523/JNEUROSCI.03-01-00232.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chronwall B. M., Chase T. N., O'Donohue T. L. Coexistence of neuropeptide Y and somatostatin in rat and human cortical and rat hypothalamic neurons. Neurosci Lett. 1984 Dec 21;52(3):213–217. doi: 10.1016/0304-3940(84)90164-2. [DOI] [PubMed] [Google Scholar]
  9. Epelbaum J., Ruberg M., Moyse E., Javoy-Agid F., Dubois B., Agid Y. Somatostatin and dementia in Parkinson's disease. Brain Res. 1983 Nov 14;278(1-2):376–379. doi: 10.1016/0006-8993(83)90277-9. [DOI] [PubMed] [Google Scholar]
  10. Fine A., Pittaway K., de Quidt M., Czudek C., Reynolds G. P. Maintenance of cortical somatostatin and monoamine levels in the rat does not require intact cholinergic innervation. Brain Res. 1987 Mar 17;406(1-2):326–329. doi: 10.1016/0006-8993(87)90801-8. [DOI] [PubMed] [Google Scholar]
  11. Fonnum F. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem. 1975 Feb;24(2):407–409. doi: 10.1111/j.1471-4159.1975.tb11895.x. [DOI] [PubMed] [Google Scholar]
  12. Jagust W. J., Davies P., Tiller-Borcich J. K., Reed B. R. Focal Alzheimer's disease. Neurology. 1990 Jan;40(1):14–19. doi: 10.1212/wnl.40.1.14. [DOI] [PubMed] [Google Scholar]
  13. Kish S. J., Currier R. D., Schut L., Perry T. L., Morito C. L. Brain choline acetyltransferase reduction in dominantly inherited olivopontocerebellar atrophy. Ann Neurol. 1987 Aug;22(2):272–275. doi: 10.1002/ana.410220214. [DOI] [PubMed] [Google Scholar]
  14. Kish S. J., Robitaille Y., el-Awar M., Clark B., Schut L., Ball M. J., Young L. T., Currier R., Shannak K. Striatal monoamine neurotransmitters and metabolites in dominantly inherited olivopontocerebellar atrophy. Neurology. 1992 Aug;42(8):1573–1577. doi: 10.1212/wnl.42.8.1573. [DOI] [PubMed] [Google Scholar]
  15. Kish S. J., Robitaille Y., el-Awar M., Deck J. H., Simmons J., Schut L., Chang L. J., DiStefano L., Freedman M. Non-Alzheimer-type pattern of brain cholineacetyltransferase reduction in dominantly inherited olivopontocerebellar atrophy. Ann Neurol. 1989 Sep;26(3):362–367. doi: 10.1002/ana.410260309. [DOI] [PubMed] [Google Scholar]
  16. Kish S. J., el-Awar M., Schut L., Leach L., Oscar-Berman M., Freedman M. Cognitive deficits in olivopontocerebellar atrophy: implications for the cholinergic hypothesis of Alzheimer's dementia. Ann Neurol. 1988 Aug;24(2):200–206. doi: 10.1002/ana.410240205. [DOI] [PubMed] [Google Scholar]
  17. Leake A., Perry E. K., Perry R. H., Jabeen S., Fairbairn A. F., McKeith I. G., Ferrier I. N. Neocortical concentrations of neuropeptides in senile dementia of the Alzheimer and Lewy body type: comparison with Parkinson's disease and severity correlations. Biol Psychiatry. 1991 Feb 15;29(4):357–364. doi: 10.1016/0006-3223(91)90221-7. [DOI] [PubMed] [Google Scholar]
  18. Mazurek M. F., Beal M. F. Cholecystokinin and somatostatin in Alzheimer's disease postmortem cerebral cortex. Neurology. 1991 May;41(5):716–719. doi: 10.1212/wnl.41.5.716. [DOI] [PubMed] [Google Scholar]
  19. Roberts G. W., Crow T. J., Polak J. M. Location of neuronal tangles in somatostatin neurones in Alzheimer's disease. Nature. 1985 Mar 7;314(6006):92–94. doi: 10.1038/314092a0. [DOI] [PubMed] [Google Scholar]
  20. Rossor M. N., Emson P. C., Mountjoy C. Q., Roth M., Iversen L. L. Reduced amounts of immunoreactive somatostatin in the temporal cortex in senile dementia of Alzheimer type. Neurosci Lett. 1980 Dec;20(3):373–377. doi: 10.1016/0304-3940(80)90177-9. [DOI] [PubMed] [Google Scholar]
  21. Whitford C., Candy J., Edwardson J., Perry R. Cortical somatostatinergic system not affected in Alzheimer's and Parkinson's diseases. J Neurol Sci. 1988 Aug;86(1):13–18. doi: 10.1016/0022-510x(88)90003-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES